
Low Power through Software Optimisation

SOCRATES’04
Joan Oliver

ETSE-UAB

SOCRATES’04 – Joan Oliver 2

Power analysis of embedded software

Until now
Power analysis techniques based on circuit-level or
architectural-level

Instruction-level power analysis model
For off the shelf microprocessors/microcontrollers
For embedded cores or IPs

Problem:
Not available power consumption information

So: development of a methodology and application to
486DX2-S with 4MB computer board for mobile applications –
Tiwari et alt.
To the actual Motorola 68HC908GP32 microcontroller

Minimisation techniques in DSP processor
Low power in Intel®855GM Chipset

SOCRATES’04 – Joan Oliver 3

Experimental method (I)

Microprocessor power consumption traditional method based on
power consumption analysis of the unitary microprocessor
modules Difficult to establish general model because power
consumption varies from program to program.
Hypothesis: By measuring the current drawn by the processor
as it repeatedly executes certain instructions or certain short
instructions sequences, it is possible to obtain most of the
information that is needed to evaluate the power cost of a
program for that processor.
Based on:

Complexity hidden behind a simple interface: the instruction set.
Individual instruction power analysis: specific circuit activity per
instruction.
To take into account: inter-instruction effects.
Valid for standard microprocessor and embedded cores.

SOCRATES’04 – Joan Oliver 4

Experimental method (II)

Power versus energy
Average power consumed by a microprocessor: P = I · VCC.
Energy consumed by a program: E = P · T
Execution time: T = τ · N .

Current measurement
Though results are specific for every processor and board, the
methodology of the model is widely applicable.

The current is measured through a standard off the shelf, dual slope,
integrating ammeter.
Execution time of the program is measured through a specific state
detection by a logic analyser.
A program writen with several instances of the instruction sequence
executing in a loop, has a periodic current waveform which yields a
steady reading in the ammeter.
In the setup: Vcc=3.3V, τ = 25ns (finternal=40MHz)

Energy cost of a program that takes N cycles with an average current of I
amps is E = I·VCC·N· τ = 8.25·10-8·I·N J

SOCRATES’04 – Joan Oliver 5

Instruction level modeling (I)

Development of a instruction level model
Each instruction has assigned a base energy cost.
Base energy cost variation due to different operand and address values
can be quantified.
Energy cost of a program based on the sum of base energy costs.
To be considered: circuit state effects and resource constraints (can lead
to stalls and cache misses).

Base energy cost per instruction
It is determined by constructing a loop with several instances of the
same construction and measuring the average current being drawn.
The total energy is is this average current multiplied by the number of
cycles taken by each instance.
Besides 486DX2 executes more than one instruction at a given time
(including pipelining) the concept of base energy cost per instruction
remains unchanged.
When instructions take multiple cycles (in a given pipelining) also the
base energy cost is just the average current measured multiplied by the
number of cycles taken by the instruction in that stage.

SOCRATES’04 – Joan Oliver 6

Instruction level modeling (II)

CPU base costs for some 486DX2 instructions.
Overall base energy cost per instruction: EB=Column3·Column4·VCC·τ.
Variations in repeated run experiments: ±1mA over average currents.

SOCRATES’04 – Joan Oliver 7

Instruction level modeling (III)

Measurement conditions:
The loop size should be large enough to in order to obtain a converged
value. It minimises the impact of the branch conditions at the end of the
loop.
But it has not to be to much large in order to avoid caches misses.
System effects like multiple time-sharing and interrupts are indesirable.

Variations in base costs:
Table shows that instructions with differing functionalities and different
addressing modes can have very different costs. It is expected since
different functional blocks are being affected in different ways by these
instructions.
The same family of instructions shows different base costs depending on
the value of the operands. For example, MOV instructions presents less
base cost as number of 1’s in data increases.

SOCRATES’04 – Joan Oliver 8

Instruction level modeling (IV)

So:
As seen by last table, variation in immediate operand values are
significant.
Use of different registers does not result in significant base cost
differences.
Range of variation shown by the ADD instruction is small: < 5%.
In instructions involving memory operands, the base costs variations
depends upon the address of the operand, and depends upon the
number of 1’s in the operand address.

Inter-instruction effects:
When sequence of instructions are considered, comes into play
certain inter-instruction effects.

Circuit state effect. When a pair of different instructions is considered,
the constext is one of greater change. A circuit state overhead is
obtained with a cost always greater than the base cost of the pair. As an
exemple, the measured cost of the sequence of the next table is
332.8mA (avg. current over 10 cycles).
Using the base costs it should be shown a base cost of 326.8mA.

SOCRATES’04 – Joan Oliver 9

Instruction level modeling (V)

Experiments revealed that the circuit state overhead has a limited range
between 5.0mA and 15.0mA.
The overall impact of switching that occurs on address and data lines is
small.
Data reads/writes on cache has an impact less than 5%.

Effect of resource constraints
Pipeline stalls and write buffer stalls could be considered as inter-
instruction effect. Exemple: a sequence of 120 MOV DX, [BX] instruction
takes 164 cycles due to prefetch buffer stalls.

Effect of cache misses
Cache misses leads to extra cycles to be consumed. It has been found a
cost penalty of 216mA per cache miss.

SOCRATES’04 – Joan Oliver 10

Estimation process

Based on the computation of the
current per instruction the cost
consumption of a program can be
obtained.
Considerations have to be taken
on:

To put the program in an infinite
loop. The unconditional jump cost
has to be added.
Computation of the times each
block is executed.
The theoretical average current
plus the state overhead costs gives
an average current of 384mA,
against the 385mA measured.

SOCRATES’04 – Joan Oliver 11

Estimation process flow

Figure shows the overall flow
First, machine (or assembler)
program code is split up into basic
blocks.
Adding up the base instructions

costs of the instructions the base
cost of the block is determined.
Energy overheads due to pipeline,
stalls, writes and other costs of the
block are added up to the base
block cost.
The number of times the block is
executed has to be determined.
Circuit state overhead (cost of a
pair of instructions, always greater
than the sum plus the difference of
bloth instructions) is added to the
overall sum at this stage.
In the end, the estimated cache
penalty is added to get the final
estimate.

SOCRATES’04 – Joan Oliver 12

Software power optimisation

Energy savings are possible through software optimisation.
Instruction reordering can imply power consumption reduction.
The instruction set chosen has influence on energy consumption. For

exemple, instructions with memory operands have very high average
current in front of instructions with register operands.

Instructions using only register operands cost about 300mA
Memory reads cost upwards 430mA.
Memory writes cost upwards 530mA.

Lesser (base clock) cycle instructions are energy saving instructions.
For example, ADD DX, [BX] takes two cycles, while ADD DX, BX
takes just one.
Potential pipeline stalls, misaligned accesses, and cache misses add
to the running time.
Though reductions in number of memory operands can be achieved
by adopting suitable code generation policies, the best way to save
memory operands is through better use of registers.

SOCRATES’04 – Joan Oliver 13

Software power optimisation: example

Results of energy optimisation of sort and circle algorithms

hlcc.asm assembly code generated by lcc, a general purpose C
compiler that produces good code.
hht1 Hand tuning for shorter (a 15% reduction) running time.
Only temporarily variables allocated in registers.
htt2 3 local variables allocated in registers and the appropiate
memory operands are replaced by register operands
htt3 2 more local variables allocated in registers and all
redundant instructions are removed.

As a result, the sort algorithm has suffered a 40.6% reduction
in power consumption, and the reduction in the circle algorithm
is about 33%.

SOCRATES’04 – Joan Oliver 14

Power optimisation at the
MC68HC908GP32 Microcontroller

The MC68HC908GP32 microcontroller
It is an actual microcontroller based on an 8-bit technology with low-cost and
high-performance attributes characteristic for the M68HC08 family. The internal
bus frequency is 8MHz.
Internal registers are: 8-bit accumulator, 16-bit index (acting also as a general
purpose) register, the 16-bit program counter and an 8-bit condition code
register. It includes also a stack pointer register of two bytes.
The whole address space comprises 64KB divided in different functional regions.
The stack addressing mode compensates the lack of internal registers.
It has 5 8-bit port sets (four are bifunctional). There are 20 different modules,
each of them dedicated to a given task, not to mention the CPU and the
execution module (computer operating properly).
The microcontroller has a low-voltage inhibit module which monitors the VDD
value and forces a reset if it falls below a critical voltage.
It can operate at 3V or 5V power supply. The maximum current in transitory state
attains 100mA, although during the steady state the order of magnitude is at
most of tens of milliamperes (at the port pins of maximal values of 10-15mA).
It has special suitability for low-power applications. It possesses two idle
operating modes named wait and stop. Both are characterized by a reduction of
the power consumed. In the wait state only the CPU clock is disabled, whereas
during the stop state, the control of the almost entire module spectrum is
relinquished, thus lowering even more the power consumption.

SOCRATES’04 – Joan Oliver 15

The MC68HC908GP32 Microcontroller

SOCRATES’04 – Joan Oliver 16

Measurement setup
Current measuring circuitry composed of

Voltage regulator. A stable supply voltage is supplied to the whole
system.
Current sensor block, It uses a high precision resistor.
Operational amplifier and comparator.

The output level of the comparator swings whenever the voltage at the one
of the two inputs exceeds the reference value. The time interval this process
lasts counts for the actual current flown.
As soon as the output of the comparator changes in value, an interruption is
issued and the computed current is stored into a table.

The whole process is repeated several times under the same test
conditions and an averaged value is thus obtained.

SOCRATES’04 – Joan Oliver 17

Instruction groups according to the
number of cycles

SOCRATES’04 – Joan Oliver 18

Analysis from instruction set cycling

Some notes from the instruction ordering can be stated:
The inherent addressing mode usually requires the smallest number of
cycles. Nevertheless, there are some exceptions, such as: division,
multiplication, instructions related to interrupts and subroutines.
From addressing modes can be stated:

direct precedes always external, if for the same subgroup both addressing
modes are implemented.
for jumps (2.5; 4.9) it is the unique case when indexed and direct share the
same number of cycles, otherwise, indexed precedes direct.

Within the jump subgroup, jumps require less cycles than subroutine
calls and, in turn, are performed more quickly than a software
interruption. The relative addressing mode refers exclusively to this
subcategory.

The first conclusion to arrive is that next following step is clock
saving:

Address the direct page than the external memory.
Use 8-byte indexation than 16 (locality of data).
Prefer memory instead of stack addressing.
Use indexed than direct addressing .

SOCRATES’04 – Joan Oliver 19

Instruction and sequence alterations (I)
The series of improvements in terms of energy savings can be
complemented with one-off steps, gathered in the present subsection:

1. If it resulted better to address the (page zero) memory instead of accessing
the stack (subsection B), the same can be affirmed, or seen as a mere
consequence, in the case of the instructions TAX / TXA (transfers between
accumulator and index register) with respect to the homologous ones implying
the stack (TSX, TXS).

2. Whenever possible, avoid using division (DIV) and multiplication (MUL), if, for
example, the multiplicand or dividend is a power of 2 (care must be taken to
the magnitude of the exponent when deciding which of the two alternatives
gives better results). Or, if the same operation can be performed as a
succession of shifts and sums, vid. subtractions.

3. The interruption process consumes more time, hence energy, for it is necessary
to push on the stack not only the program counter content as it happens when
a routine is called, but also those of the index, condition code register, and
accumulator and furthermore reset the interruption flag. That is why it is better
to avoid SWI instructions in favour of JSR (routine calls). The same discussion
applies to the corresponding return commands. The savings attain 4 and 3
cycles, respectively.

4. A similar justification can be adduced for a simple jump (branch) compared to
a jump to subroutine. The difference between the number of cycles that reflects
the duration of an ordinary jump in relation to a routine call with the same
addressing mode is of two units. One should add to it the accompanying return
instruction, 4 cycles against an average of 3 for a back jump.

SOCRATES’04 – Joan Oliver 20

Instruction and sequence alterations (I)

5. A single instruction is sometimes more beneficial to our purpose than
a couple which affords the same result (it shortens the program length,
too). As an example, when moving data from one memory location to
another, it is advisable to have it done by means of a unique move
(MOV) instead of considering a sequence of loading and storing the
data in and from the index register (LDX, STX).

6. If the semantic of program is known, as for example the data range
with which it oftener runs, it is possible to change the branch
conditions such that the taken jumps should result less frequent than
the untaken.

7. Any independent operation should be taken out of forks and cycles,
since on the contrary they will count for both branches or every
iteration, respectively.

8. When the number of iterations a cycle performs is known in advance
and its value is sufficiently small, it is better to replace it with its body
replicated the same number of times.

9. Other improvements imply disentangling nested calls and merging
calls with the same iteration number.

SOCRATES’04 – Joan Oliver 21

Assembly code optimisation compiler

Postprocess can help code
optimisation.

Cost digraph is used to find the low-
energy path.

An important software level algorithm
optimisation ways can be applied for
each case.

SOCRATES’04 – Joan Oliver 22

Minimisation techniques in DSP processor -I

Lee, Tiwari, … analyse power model at instruction level in embedded
DSP. Some significant points are:

Greater power consumption in DSP due to circuit state changes. That
means that, with appropriate scheduling of instructions can lead to a
reduction in the power-cost of the programs.
The study shows that faster programs consume less energy. Scheduling for
power minimisation is explored.
Special architectures of the DSP processor provided to reduce the number
of cycles for programs are also very effective for reducing the energy cost
of programs:

Double data transfers from different memory banks to registers in one cycle.
Packing of two instructions into a single code-word.

Also, on-chip Booth multiplier is a major source of energy consumption for
DSP programs.

Proposal of an effective technique for local code modification by operand swapping
to power consumption reduction.

The energy minimisation methodology applied to a given piece of code on a
Fujitsu (3.3V, 0.5µm, 40MHz, CMOS) embedded DSP processor shows
energy reductions ranging from 26% tp 73%.

SOCRATES’04 – Joan Oliver 23

Minimisation techniques in DSP processor -II

Effect of circuit state overhead
An inter-instruction effect (that affects the circuit state) due to the spetial
on-chip multiplier design.

Current difference between adjacent instructions i and j in respect to their separate
base current It is considered as a measure of the change in circuit state.

Considering the following four instructions without overhead cost between
instructions 1 and 3, the total current is 176.2
Measured current is 204.0. Why?

Effects of a latch introduction in the multiplier
Retention of old multiplicand values until new execution of
the next multiplier instruction.
State change at such imput latches accounted by the
overhead instructions 1 and 3.

The average value was determined to be 12.5mA
So, global overhead is two times (1 to 3, and 3 to 1) 27.6mA

SOCRATES’04 – Joan Oliver 24

Minimisation techniques in DSP processor-III

Instruction level power model
For the target DSP processor, the instructions most commonly used were
categorized into 6 unpacked classes.

Instructions in the same class have similar functionality and activate similar part of the
CPU. Hence they have similar characteristics with regards to the current drawn.

The range of base cost for different operands is calculated for each instruction
unpacked. Table shows range and average base.
Also the overhead costs between instructions belonging to different classes are
calculated.

Table shows a significant variation accros various entries. Data in the table suggests that
choosing an appropriate order of instructions can lead to an energy reduction.

SOCRATES’04 – Joan Oliver 25

Minimisation techniques in DSP processor -IV

Base cost of packed instructions that
have a data transfer instruction as a
component, is very close to the base
cost of the unpacked data transfer
instruction alone.

An ALU-type instruction and a data
transfer instruction can be packed
into a single instruction codeword for
simultaneous execution.

Except for instructions that
have a packed MAC, most
packed instructions have
small range of variations.

MAC responds for Multiplier
and Accumulator unit

Depending on the
application, packed
instructions MAC:LAB can
show large overhead
variations (from 1.4mA to
33.0mA).

SOCRATES’04 – Joan Oliver 26

Minimisation techniques in DSP processor -V

Instruction packing for low energy
The single packed instruction represents the same functionality as the
sequence of two unpacked instructions, but always leads to a
reduction in energy.
For example, a multiply instruction (MSPC) and a LAB, can either
execute as unpacked instructions for a total of two cycles, or as a
single packed instruction that executes in just one cycle.
As seen from the results, the average current drawn by packed
instructions is only marginally higher than for the unpacked
instruction. However, the number of cycles halves.

Energy minimisation for the DSP
Memory bank assignment for low energy

The DSP has two on-chip data mamory banks RAMA and RAMB that supply
data to the register file for an ALU operation, in the same cycle, or by
double a transfer instruction–LAB. When both operands are stored in the
same memory bank, two single transfer instructions MOV’s are needed, and
this takes two cycles.
The double transfer instruction takes about half the energy.
So, in order to reduce energy consumption, variables in an embedded
program should be assigned to memory to allow maximal use of double-
transfer instruction.

SOCRATES’04 – Joan Oliver 27

Minimisation techniques in DSP processor -VI
Energy minimisation for the DSP

Instruction scheduling for low power
The circuit state overhead cost has significant variation
across different instruction pairs. Thus, different
instruction schedules for the same program can
consume different power.

An auromated instruction scheduler looks up the overhead
cost tables and chooses a good instruction schedule
without violating data dependencies.

Operand swapping for the Booth multiplier
Multiplications in the MAC unit is usually (because of its
complex design) a major source of power consumption.
It is usual to have to do filter operations such as Σci*Xi
in DSP applications

The fundamental idea behind Booth algorithm it is to
recode B data by the ‘skipping over 1s’ technique, in
order to reduce the number of operations (additions
and shits) to perform with A data.

For example, for a 7-digit B value 0011110 only four
additions of shifted A are necessary.

So, the microarchitecture of the Booth multiplier does not
treat A and B simetrically. So, if the weigth of A is
smaller than that of B, the number of additions and
substractions are reduced by just swapping the
operands in registers A and B.

SOCRATES’04 – Joan Oliver 28

Low power in Intel®855GM Chipset-I

The Intel® 855GM chipset brings breakthrough integrated graphics performance and
low power to Intel® Centrino™mobile technology platforms.

Intel Centrino mobile technology is based on the four vectors of mobility: performance, battery
life, small form factor, and wireless connectivity

The mobile chipsets are optimized specifically for both performance and low power from the
architectural definition through the validation effort. Low power consumptions enables a
extended battery life of more than eight hours of usage with a single battery.

For mobility,
power/performance features
were designed into the
chipset microarchitecture.

Clock gating to reduce the
average power of the
integrated graphics engine
Delay Locked Loop (DLL)
Power Down reduces power
in theUnified Memory
Architecture (UMA)
DRAM row power to reduce
Dual In-line Memory Module
(DIMM) system power.

SOCRATES’04 – Joan Oliver 29

Low power in Intel®855GM Chipset-II

Power management architectures
Main Memory Power Management.

Main memory power managed at normal and low-power advanced configuration.
Based on idle conditions in a given row of memory, that memory row may be
powered down.
If the pages of a row have all been closed at the time of power down, the device
wii enter in a active power down state. Otherwise if pages remain open, the device
will enter in a precharge power down state.

Graphics Memory Controller Hub Dynamic IO/DLL Power Management.
Use of memory address tri-states when all memory powered down or self-refresh,
memory clock tri-states for unpopulated DIMMs, disable control for control sense
amps, data bus sense amps.
Use of DLL (Delay Locked Loops) for adjusting input signals to data strobe signals.
DLLs are designed with master and slave parts. The master calibrates the delay
elements to tuen the entire delay line. The slave is the actual delay line uses to
delay a functional signal.
DLL’s are disabled when possible.

Global design criteria.
Global design criteria has been followed to adjust the parameters:

Validation methodology, from modeling hardware for logis simulation to BIOS
validation in a pre-silicon environment.
Modeling components for logic simulations
Revision of circuit-level components .
Hardware emulation and BIOS validation.

SOCRATES’04 – Joan Oliver 30

Low power in Intel®855GM Chipset-III

Power tracking during design
During the product definition phase, targets for
peak and average power were established based
on past chipsets experience .
At pre and post-silicon phases, the power was
tracked with a spreadsheet as a sum of
individual components, with a closed loop
process to unsure designers were aware of how
far they exceeded the target with new design
innovation.

SOCRATES’04 – Joan Oliver 31

Low power in Intel®855GM Chipset-IV

Results show significant power
savings at idle, as well as savings
under a sample intense graphics
workload.
Example shows three partitions
(2D, 3D, and memory interface)
with their individual clock gating
disabled to show the impact to
core power.
Savings are produced even under
intense workload by aggressively
targetting mutually exclusive
units in each partition.

