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Power analysis of embedded software

Until now
Power analysis techniques based on circuit-level or 
architectural-level 

Instruction-level power analysis model 
For off the shelf microprocessors/microcontrollers
For embedded cores or IPs

Problem:
Not available power consumption information

So: development of a methodology and application to
486DX2-S with 4MB computer board for mobile applications –
Tiwari et alt.
To the actual Motorola 68HC908GP32 microcontroller 

Minimisation techniques in DSP processor
Low power in Intel®855GM Chipset
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Experimental method (I)

Microprocessor power consumption traditional method based on 
power consumption analysis of the unitary microprocessor 
modules Difficult to establish general model because power 
consumption varies from program to program.
Hypothesis: By measuring the current drawn by the processor 
as it repeatedly executes certain instructions or certain short 
instructions sequences, it is possible to obtain most of the 
information that is needed to evaluate the power cost of a 
program for that processor.
Based on:

Complexity hidden behind a simple interface: the instruction set.
Individual instruction power analysis: specific circuit activity per 
instruction.
To take into account: inter-instruction effects.
Valid for standard microprocessor and embedded cores.
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Experimental method (II)

Power versus energy
Average power consumed by a microprocessor: P = I · VCC.
Energy consumed by a program: E = P · T
Execution time: T = τ · N .

Current measurement
Though results are specific for every processor and board, the 
methodology of the model is widely applicable.

The current is measured through a standard off the shelf, dual slope, 
integrating ammeter.
Execution time of the program is measured through a specific state 
detection by a logic analyser.
A program writen with several instances of the instruction sequence 
executing in a loop, has a periodic current waveform which yields a 
steady reading in the ammeter.
In the setup: Vcc=3.3V, τ = 25ns (finternal=40MHz) 

Energy cost of a program that takes N cycles with an average current of I
amps is E = I·VCC·N· τ = 8.25·10-8·I·N J
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Instruction level modeling (I)

Development of a instruction level model
Each instruction has assigned a base energy cost.
Base energy cost variation due to different operand and address values
can be quantified.
Energy cost of a program based on the sum of base energy costs.
To be considered: circuit state effects and resource constraints (can lead 
to stalls and cache misses).

Base energy cost per instruction
It is determined by constructing a loop with several instances of the 
same construction and measuring the average current being drawn.
The total energy is is this average current multiplied by the number of 
cycles taken by each instance.
Besides 486DX2 executes more than one instruction at a given time 
(including pipelining) the concept of base energy cost per instruction 
remains unchanged.
When instructions take multiple cycles (in a given pipelining) also the
base energy cost is just the average current measured multiplied by the 
number of cycles taken by the instruction in that stage.
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Instruction level modeling (II)

CPU base costs for some 486DX2 instructions.
Overall base energy cost per instruction: EB=Column3·Column4·VCC·τ.
Variations in repeated run experiments: ±1mA over average currents.
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Instruction level modeling (III)

Measurement conditions:
The loop size should be large enough to in order to obtain a converged 
value. It minimises the impact of the branch conditions at the end of the 
loop.
But it has not to be to much large in order to avoid caches misses.
System effects like multiple time-sharing and interrupts are indesirable.

Variations in base costs:
Table shows that instructions with differing functionalities and different 
addressing modes can have very different costs. It is expected since 
different functional blocks are being affected in different ways by these 
instructions.
The same family of instructions shows different base costs depending on 
the value of the operands. For example, MOV instructions presents less
base cost as number of 1’s in data increases.
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Instruction level modeling (IV)

So:
As seen by last table, variation in immediate operand values are 
significant.
Use of different registers does not result in significant base cost 
differences.
Range of variation shown by the ADD instruction is small: < 5%.
In instructions involving memory operands, the base costs variations 
depends upon the address of the operand, and depends upon the 
number of 1’s in the operand address.

Inter-instruction effects:
When sequence of instructions are considered, comes into play 
certain inter-instruction effects.

Circuit state effect. When a pair of different instructions is considered, 
the constext is one of greater change. A circuit state overhead is 
obtained with a cost always greater than the base cost of the pair. As an 
exemple, the measured cost of the sequence of the next table is
332.8mA (avg. current over 10 cycles).
Using the base costs it should be shown a base cost of 326.8mA.
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Instruction level modeling (V)

Experiments revealed that the circuit state overhead has a limited range 
between 5.0mA and 15.0mA.
The overall impact of switching that occurs on address and data lines is 
small.
Data reads/writes on cache has an impact less than 5%.

Effect of resource constraints
Pipeline stalls and write buffer stalls could be considered as inter-
instruction effect. Exemple: a sequence of 120 MOV DX, [BX] instruction 
takes 164 cycles due to prefetch buffer stalls.

Effect of cache misses
Cache misses leads to extra cycles to be consumed. It has been found a 
cost penalty of 216mA per cache miss.
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Estimation process

Based on the computation of the 
current per instruction the cost 
consumption of a program can be 
obtained.
Considerations have to be taken 
on:

To put the program in an infinite 
loop. The unconditional jump cost
has to be added.
Computation of the times each 
block is executed.
The theoretical average current 
plus the state overhead costs gives 
an average current of 384mA, 
against the 385mA measured. 
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Estimation process flow

Figure shows the overall flow
First, machine (or assembler) 
program code is split up into basic 
blocks.
Adding up the base instructions 

costs of the instructions the base 
cost of the block is determined.
Energy overheads due to pipeline, 
stalls, writes and other costs of the 
block are added up to the base 
block cost.
The number of times the block is 
executed has to be determined.
Circuit state overhead (cost of a 
pair of instructions, always greater 
than the sum plus the difference of 
bloth instructions) is added to the 
overall sum at this stage. 
In the end, the estimated cache 
penalty is added to get the final 
estimate.
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Software power optimisation

Energy savings are possible through software optimisation.
Instruction reordering can imply power consumption reduction.
The instruction set chosen has influence on energy consumption. For 

exemple, instructions with memory operands have very high average 
current in front of instructions with register operands.

Instructions using only register operands cost about 300mA
Memory reads cost upwards 430mA.
Memory writes cost upwards 530mA.

Lesser (base clock) cycle instructions are energy saving instructions. 
For example, ADD DX, [BX]  takes two cycles, while ADD DX, BX 
takes just one.
Potential pipeline stalls, misaligned accesses, and cache misses add 
to the running time.
Though reductions in number of memory operands can be achieved
by adopting suitable code generation policies, the best way to save 
memory operands is through better use of registers.
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Software power optimisation: example

Results of energy optimisation of sort and circle algorithms

hlcc.asm assembly code generated by lcc, a general purpose C 
compiler that produces good code.
hht1 Hand tuning for shorter (a 15% reduction) running time. 
Only temporarily variables allocated in registers.
htt2 3 local variables allocated in registers and the appropiate 
memory operands are replaced by register operands 
htt3 2 more local variables allocated in registers and all 
redundant instructions are removed.

As a result, the sort algorithm has suffered a 40.6% reduction
in power consumption, and the reduction in the circle algorithm 
is about 33%.
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Power optimisation at the 
MC68HC908GP32 Microcontroller

The MC68HC908GP32 microcontroller
It is an actual microcontroller based on an 8-bit technology with low-cost and 
high-performance attributes characteristic for the M68HC08 family. The internal 
bus frequency is 8MHz.
Internal registers are: 8-bit accumulator, 16-bit index (acting also as a general 
purpose) register, the 16-bit program counter and an 8-bit condition code 
register. It includes also a stack pointer register of two bytes.
The whole address space comprises 64KB divided in different functional regions.
The stack addressing mode compensates the lack of internal registers.
It has 5 8-bit port sets (four are bifunctional). There are 20 different modules, 
each  of them dedicated to a given task, not to mention the CPU and the 
execution module (computer operating properly).
The microcontroller has a low-voltage inhibit module which monitors the VDD
value and forces a reset if it falls below a critical voltage.
It can operate at 3V or 5V power supply. The maximum current in transitory state 
attains 100mA, although during the steady state the order of magnitude is at 
most of tens of milliamperes (at the port pins of maximal values of 10-15mA). 
It has special suitability for low-power applications. It possesses two idle 
operating modes named wait and stop. Both are characterized by a reduction of 
the power consumed. In the wait state only the CPU clock is disabled, whereas 
during the stop state, the control of the almost entire module spectrum is 
relinquished, thus lowering even more the power consumption.
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The MC68HC908GP32 Microcontroller
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Measurement setup
Current measuring circuitry composed of

Voltage regulator. A stable supply voltage is supplied to the whole 
system.
Current sensor block, It uses a high precision resistor.
Operational amplifier and comparator.

The output level of the comparator swings whenever the voltage at the one 
of the two inputs exceeds the reference value. The time interval this process 
lasts counts for the actual current flown.
As soon as the output of the comparator changes in value, an interruption is 
issued and the computed current is stored into a table.

The whole process is repeated several times under the same test 
conditions and an averaged value is thus obtained.
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Instruction groups according to the 
number of cycles
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Analysis from instruction set cycling

Some notes from the instruction ordering can be stated:
The inherent addressing mode usually requires the smallest number of 
cycles. Nevertheless, there are some exceptions, such as: division, 
multiplication, instructions related to interrupts and subroutines.
From addressing modes can be stated: 

direct precedes always external, if for the same subgroup both addressing 
modes are implemented. 
for jumps (2.5; 4.9) it is the unique case when indexed and direct share the 
same number of cycles, otherwise, indexed precedes direct.

Within the jump subgroup, jumps require less cycles than subroutine 
calls and, in turn, are performed more quickly than a software 
interruption. The relative addressing mode refers exclusively to this 
subcategory.

The first conclusion to arrive is that next following step is clock 
saving:

Address the direct page than the external memory.
Use 8-byte indexation than 16 (locality of data). 
Prefer memory instead of stack addressing.
Use indexed than direct addressing .
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Instruction and sequence alterations (I)
The series of improvements in terms of energy savings can be 
complemented with one-off steps, gathered in the present subsection:

1. If it resulted better to address the (page zero) memory instead of accessing 
the stack (subsection B), the same can be affirmed, or seen as a mere 
consequence, in the case of the instructions TAX / TXA (transfers between 
accumulator and index register) with respect to the homologous ones implying 
the stack (TSX, TXS).

2. Whenever possible, avoid using division (DIV) and multiplication (MUL), if, for 
example, the multiplicand or dividend is a power of 2 (care must be taken to 
the magnitude of the exponent when deciding which of the two alternatives 
gives better results). Or, if the same operation can be performed as a 
succession of shifts and sums, vid. subtractions. 

3. The interruption process consumes more time, hence energy, for it is necessary 
to push on the stack not only the program counter content as it happens when 
a routine is called, but also those of the index, condition code register, and 
accumulator and furthermore reset the interruption flag. That is why it is better 
to avoid SWI instructions in favour of JSR (routine calls). The same discussion 
applies to the corresponding return commands. The savings attain 4 and 3 
cycles, respectively.

4. A similar justification can be adduced for a simple jump (branch) compared to 
a jump to subroutine. The difference between the number of cycles that reflects 
the duration of an ordinary jump in relation to a routine call with the same 
addressing mode is of two units. One should add to it the accompanying return 
instruction, 4 cycles against an average of 3 for a back jump. 
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Instruction and sequence alterations (I)

5. A single instruction is sometimes more beneficial to our purpose than 
a couple which affords the same result (it shortens the program length, 
too). As an example, when moving data from one memory location to 
another, it is advisable to have it done by means of a unique move 
(MOV) instead of considering a sequence of loading and storing the 
data in and from the index register (LDX, STX). 

6. If the semantic of program is known, as for example the data range 
with which it oftener runs, it is possible to change the branch 
conditions such that the taken jumps should result less frequent than 
the untaken. 

7. Any independent operation should be taken out of forks and cycles, 
since on the contrary they will count for both branches or every
iteration, respectively.

8. When the number of iterations a cycle performs is known in advance 
and its value is sufficiently small, it is better to replace it with its body 
replicated the same number of times. 

9. Other improvements imply disentangling nested calls and merging 
calls with the same iteration number. 
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Assembly code optimisation compiler

Postprocess can help code 
optimisation.

Cost digraph is used to find the low-
energy path.

An important software level algorithm 
optimisation ways can be applied for 
each case.

SOCRATES’04 – Joan Oliver 22

Minimisation techniques in DSP processor -I

Lee, Tiwari, … analyse power model at instruction level in embedded 
DSP. Some significant points are:

Greater power consumption in DSP due to circuit state changes. That 
means that, with appropriate scheduling of instructions can lead to a 
reduction in the power-cost of the programs.
The study shows that faster programs consume less energy. Scheduling for 
power minimisation is explored.
Special architectures of the DSP processor provided to reduce the number 
of cycles for programs are also very effective for reducing the energy cost 
of programs:

Double data transfers from different memory banks to registers in one cycle.
Packing of two instructions into a single code-word.

Also, on-chip Booth multiplier is a major source of energy consumption for 
DSP programs.

Proposal of an effective technique for local code modification by operand swapping 
to power consumption reduction.

The energy minimisation methodology applied to a given piece of code on a 
Fujitsu (3.3V, 0.5µm, 40MHz, CMOS) embedded DSP processor shows 
energy reductions ranging from 26% tp 73%.
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Minimisation techniques in DSP processor -II

Effect of circuit state overhead
An inter-instruction effect (that affects the circuit state) due to the spetial 
on-chip multiplier design.

Current difference between adjacent instructions i and j in respect to their separate 
base current It is considered as a measure of the change in circuit state.

Considering the following four instructions without overhead cost between 
instructions 1 and 3, the total current is 176.2
Measured current is 204.0. Why?

Effects of a latch introduction in the multiplier
Retention of old multiplicand values until new execution of 
the next multiplier instruction.
State change at such imput latches accounted by the 
overhead instructions 1 and 3.

The average value was determined to be 12.5mA
So, global overhead is two times (1 to 3, and 3 to 1) 27.6mA
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Minimisation techniques in DSP processor-III

Instruction level power model
For the target DSP processor, the instructions most commonly used were 
categorized into 6 unpacked classes.

Instructions in the same class have similar functionality and activate similar part of the 
CPU. Hence they have similar characteristics with regards to the current drawn.

The range of base cost for different operands is calculated for each instruction 
unpacked. Table shows range and average base.
Also the overhead costs between instructions belonging to different classes are 
calculated.

Table shows a significant variation accros various entries. Data in the table suggests that 
choosing an appropriate order of instructions can lead to an energy reduction.
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Minimisation techniques in DSP processor -IV

Base cost of packed instructions that 
have a data transfer instruction as a 
component, is very close to the base 
cost of the unpacked data transfer 
instruction alone.

An ALU-type instruction and a data 
transfer instruction can be packed 
into a single instruction codeword for 
simultaneous execution.

Except for instructions that 
have a packed MAC, most 
packed instructions have 
small range of variations.

MAC responds for Multiplier 
and Accumulator unit

Depending on the 
application, packed 
instructions MAC:LAB can 
show large overhead 
variations (from 1.4mA to 
33.0mA).
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Minimisation techniques in DSP processor -V

Instruction packing for low energy
The single packed instruction represents the same functionality as the 
sequence of two unpacked instructions, but always leads to a 
reduction in energy.
For example, a multiply instruction (MSPC) and a LAB, can either
execute as unpacked instructions for a total of two cycles, or as a 
single packed instruction that executes in just one cycle.
As seen from the results, the average current drawn by packed 
instructions is only marginally higher than for the unpacked 
instruction. However, the number of cycles halves.

Energy minimisation for the DSP
Memory bank assignment for low energy

The DSP has two on-chip data mamory banks RAMA and RAMB that supply 
data to the register file for an ALU operation, in the same cycle, or by 
double a transfer instruction–LAB. When both operands are stored in the 
same memory bank, two single transfer instructions MOV’s are needed, and 
this takes two cycles.
The double transfer instruction takes about half the energy.
So, in order to reduce energy consumption, variables in an embedded 
program should be assigned to memory to allow maximal use of double-
transfer instruction.
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Minimisation techniques in DSP processor -VI
Energy minimisation for the DSP

Instruction scheduling for low power
The circuit state overhead cost has significant variation 
across different instruction pairs. Thus, different 
instruction schedules for the same program can 
consume different power.

An auromated instruction scheduler looks up the overhead 
cost tables and chooses a good instruction schedule 
without violating data dependencies.

Operand swapping for the Booth multiplier
Multiplications in the MAC unit is usually (because of its 
complex design) a major source of power consumption.
It is usual to have to do filter operations such as Σci*Xi 
in DSP applications

The fundamental idea behind Booth algorithm it is to 
recode B data by the ‘skipping over 1s’ technique, in 
order to reduce the number of operations (additions 
and shits) to perform with A data.

For example, for a 7-digit B value 0011110 only four 
additions of shifted A are necessary.

So, the microarchitecture of the Booth multiplier does not 
treat A and B simetrically. So, if the weigth of A is 
smaller than that of B, the number of additions and 
substractions are reduced by just swapping the 
operands in registers A and B. 
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Low power in Intel®855GM Chipset-I

The Intel® 855GM chipset brings breakthrough integrated graphics performance and 
low power to Intel® Centrino™mobile technology platforms.

Intel Centrino mobile technology is based on the four vectors of mobility: performance, battery 
life, small form factor, and wireless connectivity

The mobile chipsets are optimized specifically for both performance and low power from the 
architectural definition through the validation effort. Low power consumptions enables a 
extended battery life of more than eight hours of usage with a single battery.

For mobility, 
power/performance features 
were designed into the 
chipset microarchitecture.

Clock gating to reduce the 
average power of the 
integrated graphics engine
Delay Locked Loop (DLL) 
Power Down reduces power 
in theUnified Memory 
Architecture (UMA)
DRAM row power to reduce 
Dual In-line Memory Module 
(DIMM) system power.
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Low power in Intel®855GM Chipset-II

Power management architectures
Main Memory Power Management.

Main memory power managed at normal and low-power advanced configuration.
Based on idle conditions in a given row of memory, that memory row may be 
powered down.
If the pages of a row have all been closed at the time of power down, the device 
wii enter in a active power down state. Otherwise if pages remain open, the device 
will enter in a precharge power down state.

Graphics Memory Controller Hub Dynamic IO/DLL Power Management.
Use of memory address tri-states when all memory powered down or self-refresh, 
memory clock tri-states for unpopulated DIMMs, disable control for control sense 
amps, data bus sense amps.
Use of DLL (Delay Locked Loops) for adjusting input signals to data strobe signals. 
DLLs are designed with master and slave parts. The master calibrates the delay 
elements to tuen the entire delay line. The slave is the actual delay line uses to 
delay a functional signal. 
DLL’s are disabled when possible.

Global design criteria.
Global design criteria has been followed to adjust the parameters:

Validation methodology, from modeling hardware for logis simulation to BIOS 
validation in a pre-silicon environment.
Modeling components for logic simulations
Revision of circuit-level components . 
Hardware emulation and BIOS validation.
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Low power in Intel®855GM Chipset-III

Power tracking during design
During the product definition phase, targets for 
peak and average power were established based 
on past chipsets experience .
At pre and post-silicon phases, the power was 
tracked with a spreadsheet as a sum of 
individual components, with a closed loop 
process to unsure designers were aware of how 
far they exceeded the target with new design 
innovation.
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Low power in Intel®855GM Chipset-IV

Results show significant power 
savings at idle, as well as savings 
under a sample intense graphics 
workload.
Example shows three partitions 
(2D, 3D, and memory interface) 
with their individual clock gating 
disabled to show the impact to 
core power.
Savings are produced even under 
intense workload by aggressively 
targetting mutually exclusive 
units in each partition.


