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Feed forward circuit architecture: main features

• Current mode circuits

• Translinear circuits

• Information coding through differential balanced signals

• Low Power / Low Voltage i.e.: weak inversion region of operation of 
devices, supply voltage in the range [2.5÷3]V or lower

• Implementation of normalised sums of currents: both for the 
synaptic output currents and the output error (i.e. target - output neuron 
current) currents; 

• Programmable neuron circuit gain;

• Trade off between power and area i.e.: the maximum transistor bias 
current has been set to 500nA.
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Feed forward circuit architecture
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WP learning algorithm
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• select an input pattern of the learning set
• feed forward phase
• output error computation and storage

(i.e. εp(w)=Σ|(target output value – neuron output 
value)|)

• weights perturbation
• feed forward phase
• perturbed output error computation and storage

(i.e. εp(w+p)=Σ|(target output value – neuron 
output value)|) 

• “measurement” of the error gradient ∆εp
(in terms of the absolute value and sign)

• back propagation to all synapses of the two signals: 
absolute value and sign of ∆εp

• weights update: w=w+∆w
• if εp(w) > given threshold goto point 1

elseif end
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Circuits blocks common to the whole architecture
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Analog circuit MLP architecture with on-chip WP learning
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Circuit design criteria

• The current-mode circuit design approach
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• Information coding through differential balanced signals

• Current signals distribution

• Current signals normalization

• The translinear principle (multiplier)
– The gm/Id design methodology

• Bandwidth requirements

• Translinear loop devices sizes
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The input transconductor (block G)

• IG in the range [-250nA÷250nA] 
• The cut-off frequency is about 1MHz. 
• THD of  IG : Vin input sinusoidal voltage 
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Weight Transconductor

Vin

M1 M2

M3 M4 M5 M6

M7 M8

IP IM125nA

• The linearity range of single ended to differential block is greater than “traditional” 
transconductor

• The symmetrical balanced voltages in input to transconductor permit to have right 
asymptotes [-250nA÷250nA].

9
Low Power Design Techniques and Neural Applications

Barcelona, Feb. 23-27 2004M. Valle Analog on-chip WP learning

Single ended to differential block

Suppose Mi (i=1..4) equal MOS in saturation region:

IM1= IM3, i.e.:
K[(Vp-Vin)-Vth]=K[(Vdd-Vp)-Vth] and so
Vp=½(Vdd+Vin)

At the same time, IM2= IM4, i.e.:
K[(Vdd-Vp)-Vth]=K[Vm-Vth] and so
Vm=½(Vdd-Vin)

Vsum=Vp+Vm=Vdd
Vdiff=Vp-Vm=Vin

Vp and Vm are differential balanced voltage

M1
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M3 M4

Vm

Vp

Vin

Vdd

Gnd
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The synaptic circuit (block S)

• In the design of the synapse we have to take into account:
– the circuitry necessary to perform the feed-forward phase and,
– the learning circuitry necessary for the perturbation and the update of the weight 

voltage in according to the Weight Perturbation algorithm.
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The synaptic circuit: weight perturbation (block WP)
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The synaptic circuit: weight update (block WU)

• Taking into account:
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The substract and ABS circuit (block D)

The block D estimates the error function. It computes the module of the difference between the 
neuron output current and the output current of the transconductor that codifies the target 
information.
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The current memory cell (block MC)

The current memory cell is used to store the current that codifies the value of the error 
function before and after the weight perturbation, i.e. the current I|∆ε|
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The error gradient measure (block EGM )

The EGM block provides to each synapse the sign of the gradient Vsign and the gates voltages of 
the diode connected transistors carrying the current coding the absolute value of the error 
function gradient (I|∆ε|)

The inputs of the EGM block are:
– the current value coding the error gradient before the weights perturbation (i.e. Iεp(nopert) ) 

the current value coding the error gradient after the weights perturbation (i.e. Iεp(pert)).
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Simulation results
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Conclusions (1)

62×10611×106This architecture

106×103216×103[Bo00]

32×10320.4×103[Morie99]

35×1038.7×103[Cauwenberghs96]

921.15[Berg96]

13.5×10322.5×103[Lehmann94]

Energy efficiency
[CUPS/mW]

Computational density 
[CUPS/mm2]


