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Feed forward circuit architecture: main features

» Current mode circuits
* Translinear circuits
 Information coding through differential balanced signals

» Low Power / Low Voltage i.e.: weak inversion region of operation of
devices, supply voltage in the range [2.5+3]V or lower

» Implementation of normalised sums of currents: both for the
synaptic output currents and the output error (i.e. target - output neuron
current) currents;

» Programmable neuron circuit gain;

» Trade off between power and area i.e.: the maximum transistor bias
current has been set to 500nA.
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Feed forward circuit architecture
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WP learning algorithm

« select an input pattern of the learning set
» feed forward phase
e output error computation and storage

(i.e. &(w)=2](target output value — neuron output
value)|)

* weights perturbation
o feed forward phase
»  perturbed output error computation and storage

(.e. &(w-+p)=2|(target output value — neuron
output value)|)

* “measurement” of the error gradient A,
(in terms of the absolute value and sign)

» back propagation to all synapses of the two signals:
absolute value and sign of A,

*  weights update: w=w+4w
* if g(w) > given threshold goto point 1
elseif end
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Circuits blocks common to the whole architecture Analog circuit MLP architecture with on-chip WP learning

\Z3 \z vy

Nl
R S — —F 1
Vou Current sl o1 s o1 [EN j—‘
- S. Sii S ' 2 2
Memory Cell e T BRIl | S 1F Sit I Spe1
| 1larqe[ : (error) Error ABS(gradient) - increment T ‘ N ‘ N : | |
! ! ABS Sum Current Gradient |——> Gradient sign = P L U S i L l Vi) l" 0
K 1 Translator Measure S . H—f 1 o [N Y Ve
| i Current ABS(gradient) - decrement sJl w sJI Sjn0 1E Ej Sf- |—‘ U=
Memory Cell 1 N B B ! i i
E t
. o (perturted /\* il il — 1
target erron directly to all synapses L ;i o Nps . 7 I
a1 L Lt
s S j_‘ % s2, %
()
e(W +p.)—e(w.) )
Aw, = — i i ﬁ .
i = D @) = -
1] é v, o) [ ‘ D, |
8 |ellasline
g acidec EGM e [ye s, l
sore_em_pert
M. Valle L”WPGW”DeggZ;ZZ:gZSg g;v;;’gfmp plications Analog on-chip WP learning 4 M. Valle LGWPGW”Deng;Zg:gZSg 1217/\/;:5//1;7 plications Analog on-chip WP learning 5
Circuit design criteria The input transconductor (block G)
Voo
The current-mode circuit design approach -:> Current mirrors, multipliets, adders * [Iginthe range [-250nA+250nA] Vin | TE_J‘ nlfu hlnz
. . . . . * The cut-off frequency is about 1IMHz. ¢ ¢
Information coding through differential balanced signals -:> linearity increase and C q : y : el MoL 15/2=125n
oiee tainimization « THDof /;: V, inputsinusoidal voltage

=11= i ignal with 200mV peak k A
Current signals distribution -:> | ”EL ;% $ signal with 200mV peak to pea v V)

[ 10kHz | 100kHz | iMHz | Vir

MO02
Current signals normalization I > [ osw [ 1s% | 32% | lg IElNrL_‘
50pm M7
—
. . . . . Vss=-Vi
The translinear principle (multiplier) ss=Voo

— The gm/Id design methodology -:> I\Nﬁ <6.25-10 ’{A} :
m
Bandwidth requirements l.:> IWLS 22410 3[%}

Differential pair

£
£
S i
5 1,.=250nA = si ifterentic |1
1 : : ~108 ~7 ()5 S ingle ended to differentic  |*
Translinear loop devices sizes I, ~10°A and W10 m by voltage stage
- W=40pm.
o - R T - e .
M valle Low Power Design Techniques and Neural Applications M Valle Low Power Design Techniques and Neural Applications

Barcelona, Feb. 23-27 2004 Analog on-chip WP learning 6 Barcelona, Feb. 23-27 2004 Analog on-chip WP learning 7




Weight Transconductor

* The linearity range of single ended to differential block is greater than “traditional”
transconductor

» The symmetrical balanced voltages in input to transconductor permit to have right
asymptotes [-250nA+250nA].

50n Bt 24
| e e v Jh
15 e e,
Totn,
100n
/” T6tn,
h T e
v Vit E
Sk 7 .3 e
Bl }‘I . W
%00 5, on
&
-0n, )
1250A g —| - e o
C -
i Ak Ain A & [
Voltage X fin] WOLTS)
Low Power Design Techniques and Neural Applications ohi .
M. Valle Harvelons, feb, 29.27. 2008 Analog on-chip WP learning 8

Single ended to differential block

Suppose M; (i=1..4) equal MOS in saturation region:

Iyi= lys 1625

K[(Vp-Vin)-V,]=K[(Vdd-Vp)-V,] and so

Vp=%2(Vdd+Vin)

At the same time, 1,,= I, i.€.
K[(Vdd-Vp)-V,]=K[Vm-V, ] and so

Vm=%(Vdd-Vin)

Vsum=Vp+Vm=Vvdd
Vdiff=Vp-Vm=Vin

Vp and VVm are differential balanced voltage
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The synaptic circuit (block S)

* Inthe design of the synapse we have to take into account:
— the circuitry necessary to perform the feed-forward phase and,
— the learning circuitry necessary for the perturbation and the update of the weight
voltage in according to the Weight Perturbation algorithm.
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The synaptic circuit: weight perturbation (block WP)
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The synaptic circuit: weight update (block WU)
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The substract and ABS circuit (block D)

The block D estimates the error function. It computes the module of the difference between the
neuron output current and the output current of the transconductor that codifies the target
information.
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The current memory cell (block MC)

The current memory cell is used to store the current that codifies the value of the error
function before and after the weight perturbation, i.e. the current /,,,
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The error gradient measure (block EGM )

The EGM block provides to each synapse the sign of the gradient V,,, and the gates voltages of
the diode connected transistors carrying the current coding the absolute value of the error
function gradient (/,,,)

The inputs of the EGM block are:

— the current value coding the error gradient before the weights perturbation (i.e. I ,(nopert))
the current value coding the error gradient after the weights perturbation (i.e. 1 ,(pert)).
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Simulation results

Number of layer Network Number of Pattern presentation e of Convergence
Not 1 1x1 0 1 6ms 200 200 10 60ms
And 1 2x1 1 3 6ms 200 100 30 720ms
Or 1 2x1 1 3 6ms 200 100 30 720ms
Ex-Or 2 2x2x1 1+1 9 6ms 20 100 800 19.2ms
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Conclusions (1)

0 onal d
[Lehmann94] 22.5x10° 13.5%x10%
[Berg96] 115 92
[Cauwenberghs96] 8.7x10° 35x10°
[Morie99] 20.4x10° 32x10°
[Bo00] 216x10° 106x10°
This architecture 11x108 62x10°
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