
Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

Maurizio Valle

Analog Back Propagation 
on-chip learning

1
Low Power Design Techniques and Neural Applications

Barcelona, Feb. 23-27 2004M. Valle On-chip BP learning

On-chip learning architecture (architectural mapping)
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Synaptic module
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The synaptic module
• F is the feed-forward four-quadrant multiplier: 

• B1 is the backward four-quadrant multiplier: 

• B2 is the weight update four-quadrant multiplier: 

B2 generates also the sign Sk,j: 

� Η is the local learning rate adaptation circuit block

• WU is the weight block: 

The WU performs also the short-term memorization of the weight value.
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Neuron module
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Neuron module

• A, activation function module: 

• D, derivative module:

• R, the error multiplier:

• FC, the error circuit:
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Correspondence tables between neural and electrical variables

Synaptic Module

Neural

variables

Electrical

variables

Xj VX

Wk,j·Xj IWX

Wk,j VW

∆Wk,j I∆W

δk Vδ

δk·Wk,j IδW

ηk,j Iη

Sk,j VSη

Neuron Module

Neural

variables

Electrical

variables
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On-chip learning algorithm
iterate on k

select P in a random manner in the training set off-chip

put P in input to the MLP off-chip

perform the feedforward phase on-chip

parallel for each synapse ith, jth
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F and B1 four-quadrant multiplier
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The Ψ Block
The Ψ block is a non-linear transconductor that converts the weight voltage Vw into a differential

current Iw=Iwp-Iwn. Being equal the aspect ratio (i.e., W/L) of M1 and M2 as well for M3 and M4, and

supposing all of them biased in strong inversion, we can write:

where

βi and Vthi are the gain factors and the threshold voltages of Mi (i=1÷4) respectively.
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The ΟΤΑ Block

The resulting differential current Iw can be written as:
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where n is the weak inversion slope coefficient UT is the thermal voltage, and Vr is the signal ground

(i.e. the synaptic input is null for VX=Vr).

If the value of the argument of the tanh function is small (i.e. V V mVX r− ≤ 100 ), we can

approximate it with its argument:

))((
2

1
rXWw

T
WX XVVg

nU
I −≅

11
Low Power Design Techniques and Neural Applications

Barcelona, Feb. 23-27 2004M. Valle On-chip BP learning

The B2 multiplier
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The Weight Unit
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Weight update circuit (1)
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Ideal Weight Update

Charge Injection Term
(few millivolts)

Charge Sharing Term
(hundreds millivolts)

The main error term is due to the charge sharing between Cp and CW when the 
switch is closed. The value of ∆Vcs depends on the values of Cp and Cw.
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Weight update circuit (2)

• Learning task: character
recognition

• Network topology:
112×32×10 MLP 

• Training set: 1000 char

• Test set: 1000 char
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Local learning rate adaptation circuit (H) (1)
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Local learning rate adaptation circuit (H) (2)

Vu

(t+1)th iterationtth iteration

ϕ4
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⇒ At the beginning all the ϕn are low: B2 has computed I∆W(t) and )(tS ; )(tS  is already in input to

the inverter I0, and )1( −tS  [computed during the (t-1)th learning iteration] is in input to the

inverter I1.

⇒ ϕ1 high: )1( −tS is at input B of G0.

⇒ ϕ2 high: )(tS is at input A of G0. If )(tS  and )1( −tS  have equal values, node C is connected to

the voltage VH (switch T1 closed), otherwise node C is connected to the voltage VL (switch T2

closed).

⇒ ϕ3 high: the value of VC1(t) is set as follows:
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ϕ4 high: the capacitors C1 and C2 [C2 stores the voltage Vη(t)] perform the charge sharing.
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Local learning rate adaptation circuit (H) (3)
The updated value of the learning rate control voltage Vη(t+1) is given by the

following expression:
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where γ =
+
C

C C
1

1 2

.

Being the transistor Mη biased in weak inversion, the new value of the

learning rate current Iη(t+1) is given by:

( ) ( ) TnUtV
s eItI 11 +⋅=+ η

η

where Is is the specific current of the transistor Mη.
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Local learning rate adaptation circuit (H) (4)
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The previous equation implements the learning rate adaptation rule,

where γ =
+
C

C C
1

1 2

, and Ic1(t) corresponds to ηmax or ηmin.

The maximum and minimum vales of the learning rate current are:
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For instance, if (VH - VL)=0.3V, the ratio between the maximum and

minimum values of the learning rate current can be one thousand.
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The activation function A circuit
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The derivative circuit D
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The error circuit R
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The SLANP chip (1)
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The SLANP chip (2) - the synaptic module
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The SLANP chip (3) - the neuron module
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The SLANP chip (4)
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Experimental results (1)
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Experimental results (2)
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Experimental results (3)
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Transient response of the circuit  for a positive (a) and negative (b) weight 
values (upper traces: synaptic input signals; bottom traces: neuron output 

signals).
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Experimental results (4) (circuit FC)
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Experimental results (5) (Weight decay due to leakage 
currents on the weight capacitor Cw.)
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Experimental results (6) - learning

Training of the NOT function. Top trace – target signal; middle trace – output signal; bottom trace – a 
weight signal. The network were configured as 1×8×1 MLP and the learning rates were fixed to 

0.5V. The learning iteration was 800µs.
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Experimental results (7) - learning

Four output neuron signals at the end of the training process for problem described by . The network 
were configured as 8×16×4 MLP and all the learning rates were locally adapted: the minimum and 

maximum learning rate values were 0.4 and 0.7V. The learning iteration was 80µs.

Training set for the CLASSIFICATION problem.

Input Pattern Target

11001100 0001

10011001 0010

00110011 0100

01100110 1000
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Experimental results (8) - learning

Training of the 2 input XOR function. The 
two input signals (first and second 

traces), the target signal (third wave) , 
and output signal (fourth wave) at the 

end of the training process. The 
network was configured  as 2×2× 1 

MLP and all the learning rates were 
locally adapted: the minimum and 

maximum learning rate values were 
0.4 and 0.7V. The learning iteration 

was 200µs.
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Performance
Network size 8×16×4 MLP

On-chip learning algorithm by-pattern BP with
local learning rate adaptation

Technology ATMEL ES2 ECPD07

Transistor count 22000

Chip size 3.5mm×3.5mm

Power consumption 25mW

Recall computational power 106MCPS

Computational power 2.65MCUPS

Computational density 216000CUPS/mm2

Energy efficiency 106000CUPS/mW


