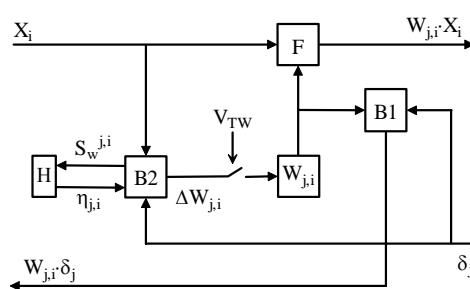
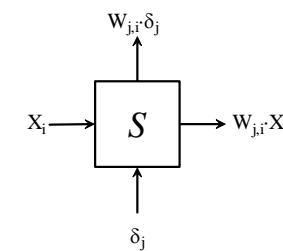
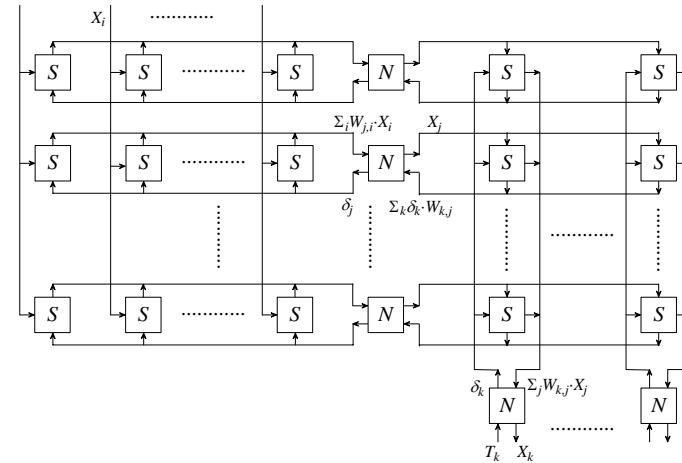


Analog Back Propagation on-chip learning

Maurizio Valle



On-chip learning architecture (architectural mapping)



M. Valle

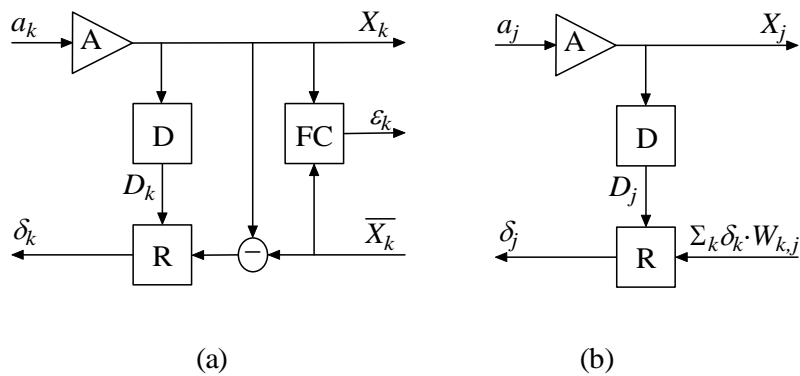
Synaptic module

The synaptic module

- **F** is the feed-forward four-quadrant multiplier: $W_{k,j} X_j$
- **B1** is the backward four-quadrant multiplier: $\delta_k W_{k,j}$
- **B2** is the weight update four-quadrant multiplier: $\Delta W_{k,j} = \eta_{k,j} \delta_k X_j$
- **B2** generates also the sign $S_{k,j}$: $S_{k,j} = \text{sign}\left(\frac{\varepsilon_p}{\partial W_{k,j}}\right) = -\text{sign}(\Delta W_{k,j})$
- **H** is the local learning rate adaptation circuit block
- **WU** is the weight block: $W_{k,j}^{\text{new}} = W_{k,j}^{\text{old}} + \Delta W_{k,j}$

The WU performs also the short-term memorization of the weight value.

Neuron module



Neuron module

- **A, activation function module:** $X_{k(j)} = \Psi(a_{k(j)})$
- **D, derivative module:** $D_{k(j)} = 1 - (X_{k(j)})^2$
- **R, the error multiplier:** $\delta_k = (\bar{X}_k - X_k)D_k$ $\delta_j = (\sum_k \delta_k W_{k,j})D_j$
- **FC, the error circuit:** $\epsilon_k = (\bar{X}_k - X_k)^2$

Correspondence tables between neural and electrical variables

Synaptic Module		Neuron Module	
Neural variables	Electrical variables	Neural variables	Electrical variables
X_j	V_X		
$W_{k,j} \cdot X_j$	I_{WX}		
$W_{k,j}$	V_W		
$\Delta W_{k,j}$	$I_{\Delta W}$		
δ_k	V_δ		
$\delta_k \cdot W_{k,j}$	$I_{\delta W}$		
$\eta_{k,j}$	I_η		
$S_{k,j}$	$V_{S\eta}$		
$a_{k(j)}$	I_a		
$X_{j(k)}$	V_X		
\bar{X}_k	V_T		
$\sum_k \delta_k \cdot W_{k,j}$	$V_{\delta W}$		
$\delta_{k(j)}$	V_δ		
$D_{k(j)}$	I_d		
ϵ_k	I_ϵ		

On-chip learning algorithm

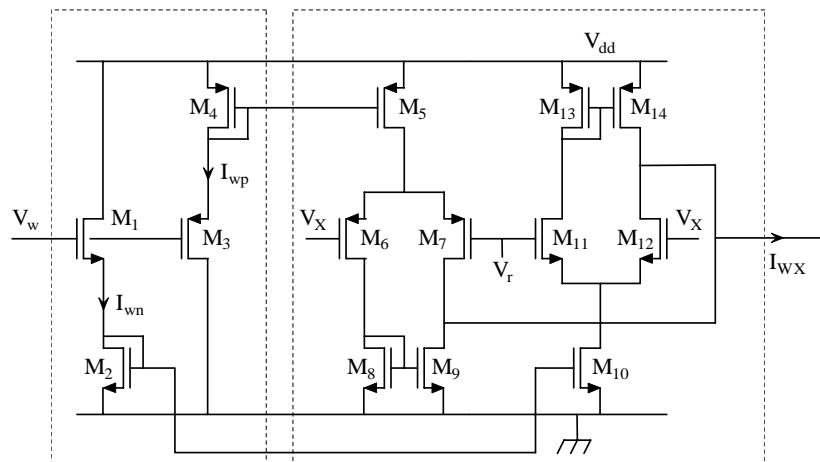
```

iterate on k
  select P in a random manner in the training set
  put P in input to the MLP
  perform the feedforward phase
  parallel for each synapse ith, jth
    compute  $\Delta W_{j,i}(k) = -\eta_{j,i}(k) \cdot \frac{\partial E(k)}{\partial W_{j,i}}$ 
    compute  $S_{j,i}(k)$ 
     $W_{j,i}(k+1) = W_{j,i}(k) + \Delta W_{j,i}(k)$ 
    if  $S_{j,i}(k) = S_{j,i}(k-1)$ 
       $\eta_{j,i}(k+1) = \eta_{j,i}(k) \cdot \left[ \frac{\eta_{\max}}{\eta_{j,i}(k)} \right]^\gamma$ 
    else
       $\eta_{j,i}(k+1) = \eta_{j,i}(k) \cdot \left[ \frac{\eta_{\min}}{\eta_{j,i}(k)} \right]^\gamma$ 
    endif
  end parallel
until convergence is reached

```

off-chip
off-chip
on-chip
off-chip

F and B1 four-quadrant multiplier



The Ψ Block

The Ψ block is a non-linear transconductor that converts the weight voltage V_w into a differential current $I_w = I_{wp} - I_{wn}$. Being equal the aspect ratio (i.e., W/L) of M_1 and M_2 as well for M_3 and M_4 , and supposing all of them biased in strong inversion, we can write:

$$I_{wn} = \begin{cases} \beta_n (V_w - V_{th1} - V_{th2})^2 & V_w \geq V_{th1} + V_{th2} \\ 0 & V_w < V_{th1} + V_{th2} \end{cases}$$

$$I_{wp} = \begin{cases} \beta_p (V_w - V_{th3} - V_{th4})^2 & V_w \leq V_{dd} + V_{th3} + V_{th4} \\ 0 & V_w > V_{dd} + V_{th3} + V_{th4} \end{cases}$$

where

$$\frac{1}{\sqrt{\beta_n}} = \frac{1}{\sqrt{\beta_1}} + \frac{1}{\sqrt{\beta_2}} \quad \frac{1}{\sqrt{\beta_p}} = \frac{1}{\sqrt{\beta_3}} + \frac{1}{\sqrt{\beta_4}}$$

β_i and V_{thi} are the gain factors and the threshold voltages of M_i ($i=1\div 4$) respectively.

The OTA Block

The resulting differential current I_w can be written as:

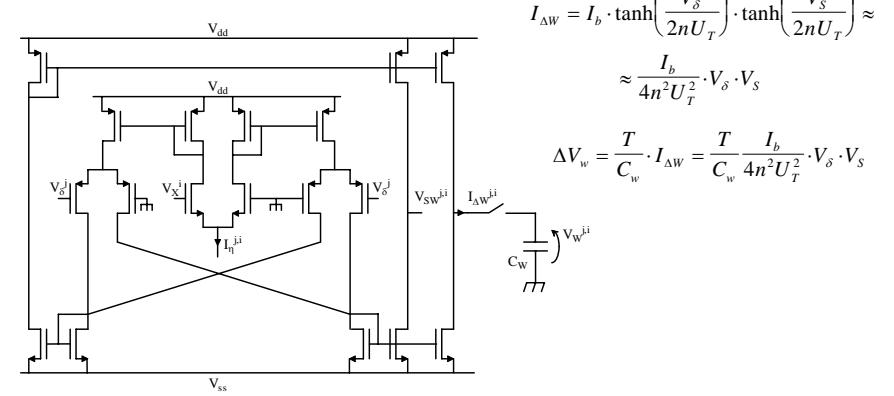
$$I_{wx} = (I_{wp} - I_{wn}) \tanh\left(\frac{V_x - X_r}{2nU_T}\right) = g_w(V_w) \tanh\left(\frac{V_x - X_r}{2nU_T}\right)$$

where n is the weak inversion slope coefficient U_T is the thermal voltage, and V_r is the signal ground (i.e. the synaptic input is null for $V_x = V_r$).

If the value of the argument of the \tanh function is small (i.e. $|V_x - V_r| \leq 100mV$), we can approximate it with its argument:

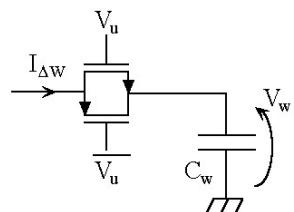
$$I_{wx} \approx \frac{1}{2nU_T} g_w(V_w)(V_x - X_r)$$

The B2 multiplier

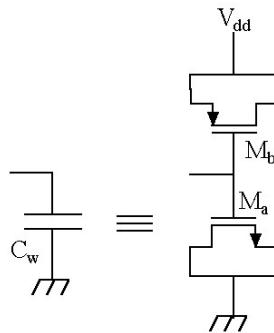


The Weight Unit

$$V_w(t_0 + T) = V_w(t_0) + \frac{T}{C_w} I_{\Delta W}$$

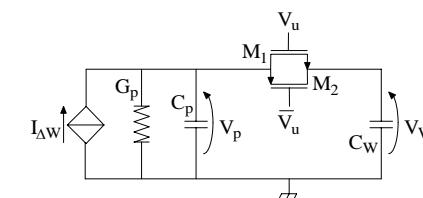


(a)



(b)

Weight update circuit (1)



$$\Delta V_w = \frac{T}{C_w + C_p} \cdot I_{\Delta W} + \Delta V_{ci} + \Delta V_{cs}$$

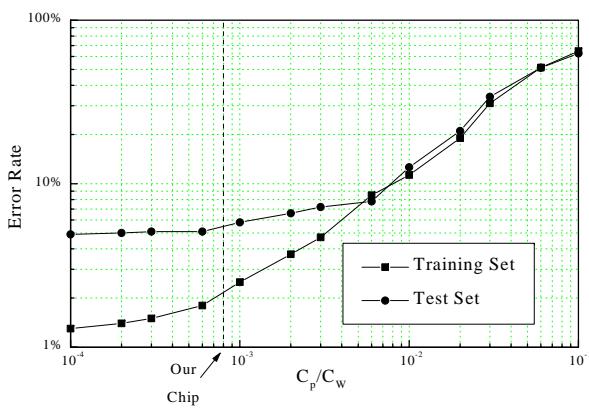
Ideal Weight Update

Charge Sharing Term
(hundreds millivolts)

Charge Injection Term
(few millivolts)

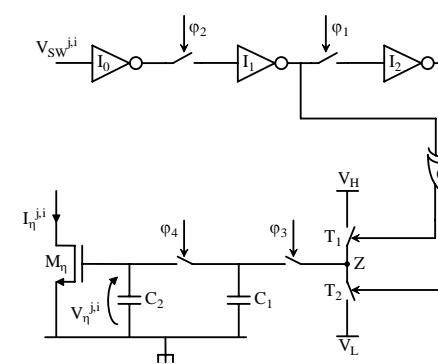
The main error term is due to the charge sharing between C_p and C_w when the switch is closed. The value of ΔV_{cs} depends on the values of C_p and C_w .

Weight update circuit (2)

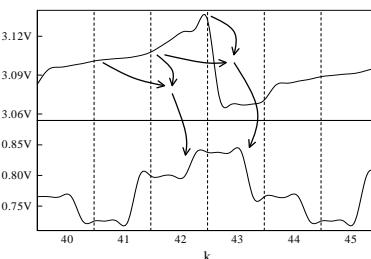


- Learning task: character recognition
- Network topology: 112×32×10 MLP
- Training set: 1000 char
- Test set: 1000 char

Local learning rate adaptation circuit (H) (1)



ϕ_i : four phases
non-overlapping clock



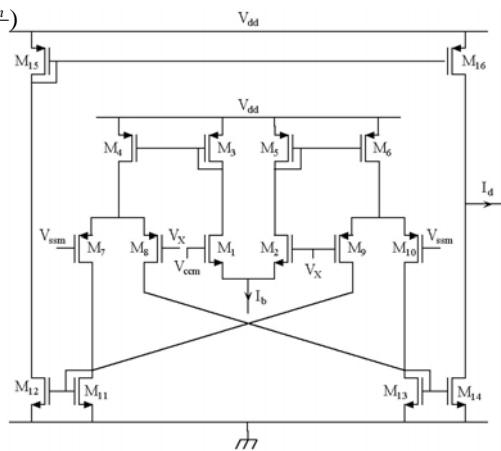
The derivative circuit D

$$I_d = I_b \tanh\left(\frac{V_{ccm} - V_X}{2nU_T}\right) \tanh\left(\frac{V_X - V_{ssm}}{2nU_T}\right)$$

$$I_d \approx \frac{I_b}{4(nU_T)^2} (V_{ccm} - V_X)(V_X - V_{ssm})$$

$$V_{ccm} - V_r = V_r - V_{ssm} = V_{norm}$$

$$I_d \approx \frac{I_b V_{norm}}{4(nU_T)^2} \left(1 - \left(\frac{V_X - V_r}{V_{norm}}\right)^2\right)$$



M. Valle

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

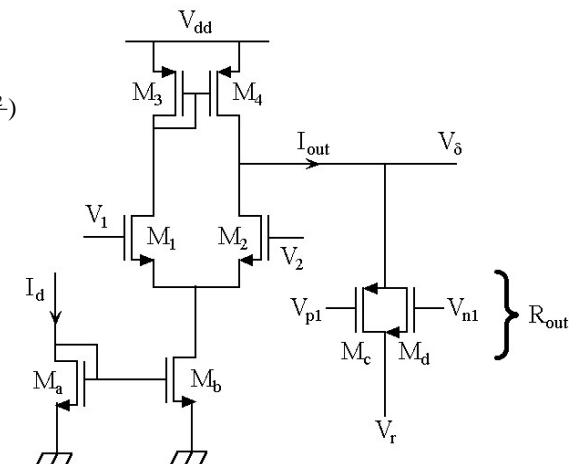
On-chip BP learning

20

The error circuit R

$$V_\delta = R_{out} I_d \tanh\left(\frac{V_1 - V_2}{2nU_T}\right)$$

$$V_\delta \approx \frac{R_{out} I_d}{2nU_T} (V_1 - V_2)$$



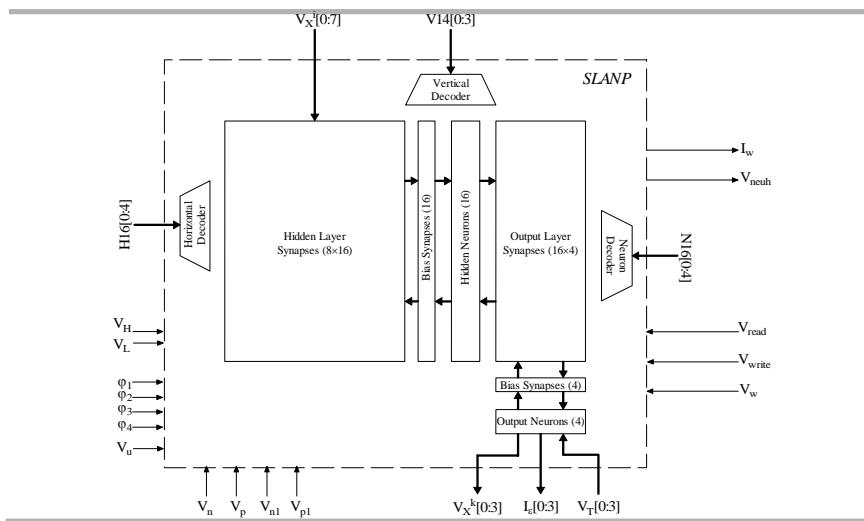
M. Valle

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

On-chip BP learning

21

The SLANP chip (1)



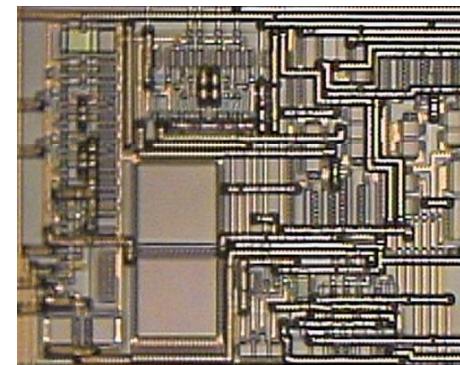
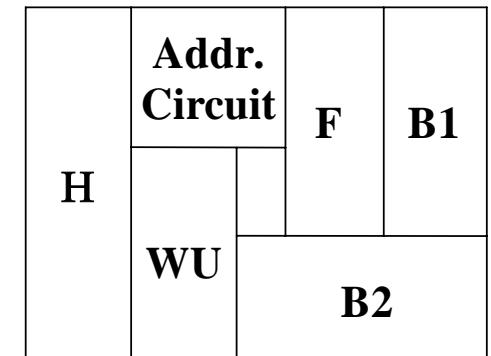
M. Valle

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

On-chip BP learning

22

The SLANP chip (2) - the synaptic module



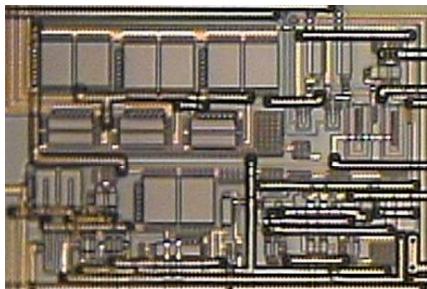
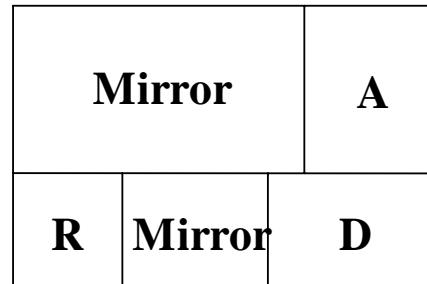
M. Valle

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

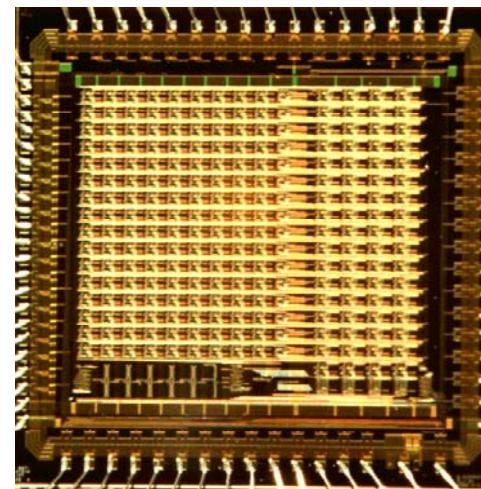
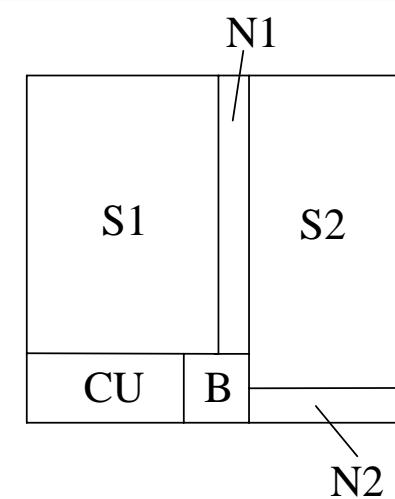
On-chip BP learning

23

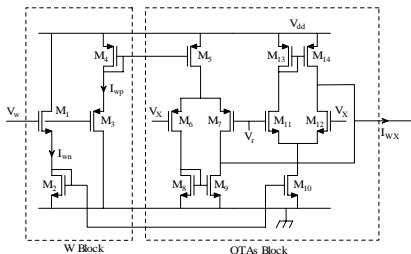
The SLANP chip (3) - the neuron module



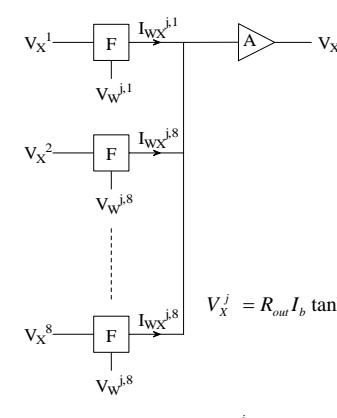
The SLANP chip (4)



Experimental results (1)

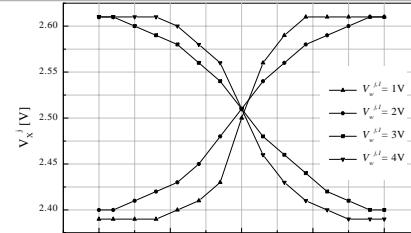


Experimental results (2)

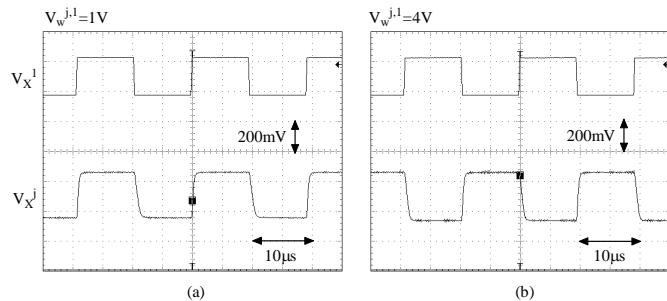


$$V_X^j = R_{out} I_b \tanh \left\{ \frac{R_{in} \left[\sum_i g(V_w^{j,i}) \frac{(V_X^j - V_r)}{2nU_T} \right] - V_r}{2nU_T} \right\}$$

$$V_X^j = R_{out} I_b \tanh \left\{ \frac{R_{in} g(V_w^{j,1}) \frac{(V_X^j - V_r)}{2nU_T} - V_r}{2nU_T} \right\}$$

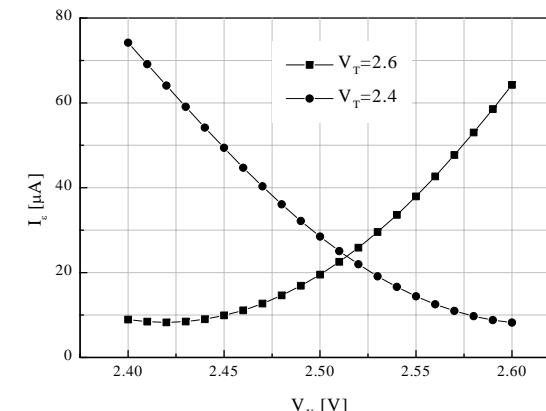


Experimental results (3)

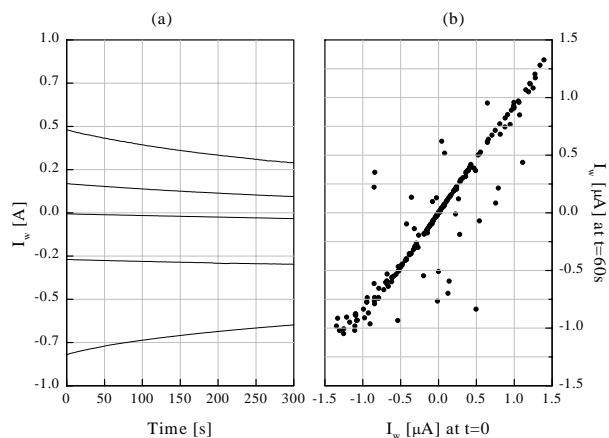


Transient response of the circuit for a positive (a) and negative (b) weight values (upper traces: synaptic input signals; bottom traces: neuron output signals).

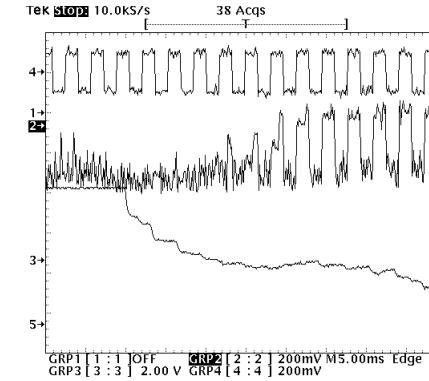
Experimental results (4) (circuit FC)



Experimental results (5) (Weight decay due to leakage currents on the weight capacitor C_w)



Experimental results (6) - learning

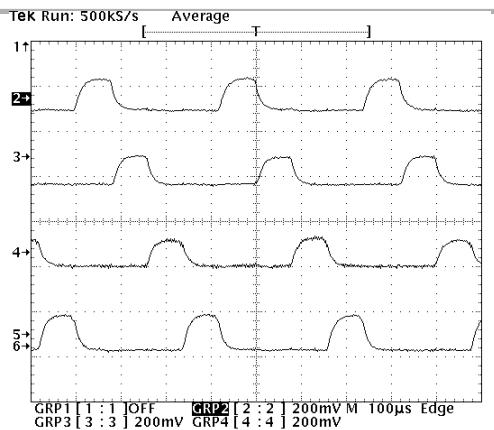


Training of the NOT function. Top trace – target signal; middle trace – output signal; bottom trace – a weight signal. The network were configured as $1 \times 8 \times 1$ MLP and the learning rates were fixed to 0.5V. The learning iteration was 800μs.

Experimental results (7) - learning

Training set for the CLASSIFICATION problem.

Input Pattern	Target
11001100	0001
10011001	0010
00110011	0100
01100110	1000



Four output neuron signals at the end of the learning process. The network was configured as 8x16x4 MLP and all the learning rates were locally adapted: the minimum and maximum learning rate values were 0.4 and 0.7V. The learning iteration was 80μs.

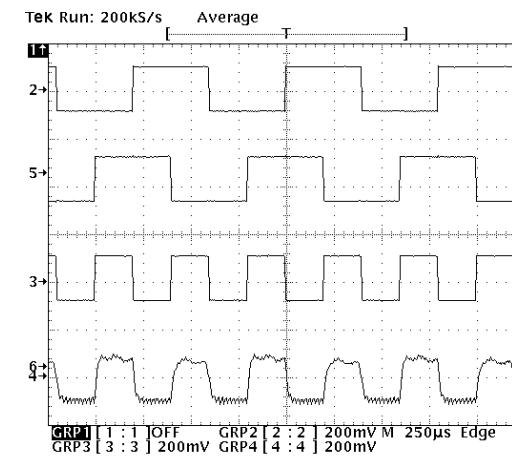
M. Valle

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

On-chip BP learning

32

Experimental results (8) - learning



Training of the 2 input XOR function. The two input signals (first and second traces), the target signal (third wave), and output signal (fourth wave) at the end of the training process. The network was configured as 2x2x1 MLP and all the learning rates were locally adapted: the minimum and maximum learning rate values were 0.4 and 0.7V. The learning iteration was 200μs.

M. Valle

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

On-chip BP learning

33

Performance

Network size	8x16x4 MLP
On-chip learning algorithm	by-pattern BP with local learning rate adaptation
Technology	ATMEL ES2 ECPD07
Transistor count	22000
Chip size	3.5mm×3.5mm
Power consumption	25mW
Recall computational power	106MCPS
Computational power	2.65MCUPS
Computational density	216000CUPS/mm ²
Energy efficiency	106000CUPS/mW

M. Valle

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

On-chip BP learning

34