
Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

Maurizio Valle

Neural Networks and

supervised learning algorithms

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 1

NNs and
supervised learning

McCulloch and Pitts model [1943]

• y = f(net), where

• Unsupervised learning
[Hebb, 1949]

jiijij YXtWtW η+=+)()1(,,

Θ−⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

N

i
iiWXnet

1

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 2

NNs and
supervised learning

Perceptron convergence procedure [Rosenblatt, 1961]

Example

• y > 0, if the input vector
at iteration t
x(t) = (x1 , x2) ∈ class C1

• y < 0, if the input vector
at iteration t
x(t) = (x1 , x2) ∈ class C2

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 3

NNs and
supervised learning

Perceptron convergence procedure [Rosenblatt, 1961]

• initialise weights Wi (t=0) and Θ to small random values

• present new input vector x(t) (t is the iteration index)

• calculate the actual output y(t)

• adapt weights according to:

where 0 < η <1 and d(t) is the target value

• go to step 2 and repeat for the next pattern

)()]()([)()1(tXtytdtWtW iii −+=+ η

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 4

NNs and
supervised learning

Minsky and Papert [1969]
Perceptron can only create linear decision regions

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 5

NNs and
supervised learning

Widrow-Hoff algorithm [1960] (delta or adaline or
Widrow-Hoff or LMS rule)

The neuron transfer function f is made linear (ADAptive LINEar combiner,
ADALINE) or replaced by a threshold-logic non-linearity

• Steepest descent type learning algorithm (on-line or by-pattern)

indexerror pattern)()()(())()(()(
1

2 2) ⎟
⎠

⎞
⎜
⎝

⎛
−=−= ∑

=

N

i
iipppp tWtXftdtttdtε

indexerror total)()(
1

 tt p

M

p
εε ∑

=

=

)(
)(

)()1()(
tW
t

tWtWtW
i

p
iii ∂

∂
−=−+=∆

ε
η

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 6

NNs and
supervised learning

Widrow-Hoff algorithm [1960] (delta or adaline or Widrow-
Hoff or LMS rule)

• Steepest descent type learning algorithm (batch or by-epoch)

'))())(()((
2
1

)(
)(

, ftXtytd
tW
t

pipp
i

p −−=
∂

∂ε

)(
)(

)()1()(
tW
t

tWtWtW
i

iii ∂

∂
−=−+=∆

ε
η

'))())(()((
2
1)(, ftXtytdtW pippi −=∆ η

'))())(()((
2
1

)(
)(

)(

)(

)(
)(

,
11

1 ftXtytd
tW
t

tW

t

tW
t

pipp

M

pi

p
M

pi

p

M

p

i

−−=
∂

∂
=

∂

∂
=

∂

∂
∑∑

∑
==

= ε
ε

ε

'))())(()((
2
1)(,

1
ftXtytdtW pipp

M

p
i −=∆ ∑

=

η

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 7

NNs and
supervised learning

Neuron transfer functions

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 8

NNs and
supervised learning

Multi-Layer Networks

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 9

NNs and
supervised learning

Why Neural Networks?

• learning from experience

• generalising from examples

• developing solutions faster and with less reliance on domain expertise

• computational efficiency

• non-linearity

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 10

NNs and
supervised learning

Identifying neural computing applications [Tarassenko
1999]

• the solution of the problem cannot be explicitly described by an algorithm,
a set of equations or a set of rules

• there is some evidence that an input-output mapping exists between a set
of input variables x and corresponding output data y, such that y=f(x).
The form of f however is not known.

• there should be a large amount of data available, i.e. many different
examples with which to train the network.

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 11

NNs and
supervised learning

Typical business functions and neural computing
application areas [Tarassenko 1999]

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 12

NNs and
supervised learning

Multi-Layer Networks

• Richard and Lippmann (1991) showed that multi-layer neural networks
estimate the posterior probability P(Ck/x) directly (i.e. the probability of

the class Ck given the input vector x). This holds if:
– a 1-out-of-K output coding (so that tk = 1 if x belongs to Ck and 0

otherwise) is used
– the weights are chosen so as to minimize a squared-error cost function.

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 13

NNs and
supervised learning

Multi-Layer Networks [Lippmann 1987]

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 14

NNs and
supervised learning

Some properties of MLP networks

• If xk = ±1 (xk = +1/0) (components of the input vector) and f=sgn(x) (hard
limiter) for the single output unit and f=tanh(x) (f=sigmoid(x)) for the
hidden units, then only one hidden layer suffices to represent any Boolean
function.

• To approximate a function F(x) to a given accuracy, at most two hidden
layers, with arbitrary accuracy being obtainable given enough neurons
per layer, are needed [Cybenko 1988].

• Only one hidden layer is enough to approximate any continuous function
[Cybenko 1989][Hornik et al., 1989].

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 15

NNs and
supervised learning

How much hidden units?

• The number of training examples (i.e. input vectors in the training set P) should be
of the same order as the number of free parameters of the network. Given a I-J-K
MLP network, the number of weights W is: W=(I+1)J+(J+1)K; then P=W.

• Baum and Haussler (1989):
P=W/ε

where ε is an “accuracy parameter” (i.e. the fraction of patterns of the test set which
are incorrectly classified). For a good generalization the accuracy level “should
be” 90% corresponding to ε=0.1 then: 10W=P

• Widrow and Lear (1990) argued that:
P >> W/K

In conclusion
• A lower bound for the number of training patterns P is: W=P
• A realistic upper bound might be P =10W

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 16

NNs and
supervised learning

Standard architecture of an N-layer Multi Layer Perceptron
network

X0 X1 X2

W1 W2

1st (hidden) layer 2nd (hidden) layer

Ψ

Ψ

Ψ

Ψ

Ψ

Ψ

XN-1 XN

WN

Ψ

Ψ

Ψ

Nth (output) layer

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 17

NNs and
supervised learning

The Back Propagation learning algorithm

()
]1[],1[],1[

tanh
1

1

1
,

1

−

=

−

÷∈÷∈÷∈

=

=∑
−

ll

l
j

l
j

n

i

l
i

l
ij

l
j

ninjNl

aX

XWa
l

[]2
12

1)(∑
=

−=
Nn

k

N
k

N
kp XXwε

• feedforward computations

• error index for the pth pattern

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 18

NNs and
supervised learning

The Back Propagation learning algorithm

• error index

• weight update rule

usually 0<α<1

[]2
111 2

1)()(∑∑∑
===

−==
Npp n

k

N
k

N
k

N

p
p

N

p
XXww εε

)1()()()1()1(,,,,, −∆+∆=−+=+∆ tWtWtWtWtW l
ij

l
ij

l
ij

l
ij

l
ij α

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 19

NNs and
supervised learning

The Back Propagation learning algorithm

• batch (by-epoch)

• on-line (by pattern)

a pattern is presented at the input and then all weights are updated before the next pattern is
considered. If η is small enough, this clearly decreases the cost function at each step.

If the pattern are chosen in random order from the training set, it also makes the path
through weight-space stochastic allowing wider exploration of the cost surface.

ji
ji w

W
,

,
)(

∂
∂

−=∆
wεη

ji

p
ji w

W
,

,

)(
∂

∂
−=∆

wε
η

layershidden in the X

layeroutput in the X

1

1
,

1

1
,

−

=

−

=

∑

∑

=∆

=∆

l
i

l
j

N

p

l
ij

NN
k

N

p

N
k

p

p

W

W

δη

δη υυ

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 20

NNs and
supervised learning

The Back Propagation learning algorithm

• on-line BP

]1[],1[],11[
]1[],1[

layershidden in the
)(

layeroutput in the
)(

1

1
,

,

,
,

−

−

÷∈÷∈−÷∈
÷∈÷∈

∂

∂
−=∆

∂

∂
−=∆

ll

NN

l
ij

pl
ij

N
k

pN
k

ninjNl
nnk

W
W

W
W

υ

ε
η

ε
η

υ
υ

w

w

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 21

NNs and
supervised learning

The Back Propagation learning algorithm

]1[],1[],11[
]1[],1[

layershidden in the X
layeroutput in the X

1

1

1
,

1
,

−

−

−

−

÷∈÷∈−÷∈
÷∈÷∈

=∆
=∆

ll

NN

l
i

l
j

l
ij

NN
k

N
k

ninjNl
nnk

W
W

υ
ηδ
ηδ υυ

• for the kth neuron of the output layer the error term is:

• for the ith neuron of the lth hidden layer:

∑∑
++

=

++
+

+

+

+

=
+ =

∂

∂
⋅

∂
∂

⋅
∂
∂
⋅

∂

∂
−=

11

1

1
,

1
1

1

1

1

1
1

)(ll n

k

l
j

l
jk

l
kl

j

l
j

l
j

l
k

l
k

l
k

n

k
l
k

pl
j DW

a
X

X
a

a
X

X
δ

ε
δ

w

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 22

NNs and
supervised learning

The Back Propagation learning algorithm

• where and are the derivatives of the neuron activation function with
respect to and respectively

N
kD l

jD
N
ka l

ja

22

22

)(1)(tanh1

)(1)(tanh1

l
j

l
jl

j

l
jl

j

N
k

N
kN

k

N
kN

k

Xa
a
X

D

Xa
a
XD

−=−=
∂

∂
=

−=−=
∂
∂

=

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 23

NNs and
supervised learning

The Back Propagation learning algorithm

• 1. Initialize the synaptic weights to small random values.

• 2. Present an input pattern (chosen randomly out of the training set) to the

network and compute the neuron outputs

• 3. Present the corresponding target output to the network and compute the error

terms for all neurons

• 4. Update the synaptic weight values

• 5. Go back to step 2 until the error εp is acceptably low (i.e. the given termination

condition/stopping criterion is satisfied).

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 24

NNs and
supervised learning

The stopping criterion

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 25

NNs and
supervised learning

Learning rate and momentum term

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 26

NNs and
supervised learning

The Perturbation-based learning algorithm

Based on the approximation of the error gradient by a finite difference
• Weight perturbation (Jabri and Flower, 1992)

• Stochastic error descent (Cauwenberghs, 1993)
∆w=-η(εp(w+p(n))- εp (w)) p’(n)

where n is the iteration index, p(n) is the perturbation matrix of elements pj,i which are spatially and
temporally uncorrelated

)(
,

,
)(

,,

,

)()()(
n

ij

ijp
n

ijijp

ij

p

p
wpw

w
εεε −+

≅
∂

∂ w

)(
,

,
)(

,,
,

)()(
n

ij

ijp
n

ijijp
ij p

wpw
w

εε
η

−+
−=∆

),(),(
2

,,)(mnklji
m

lk
n

ij ppE δδσ=

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 27

NNs and
supervised learning

The Perturbation-based learning algorithm

• the algorithm performs gradient descent on average
• the error index always decreases provided that the |pj,i |2 is “small” and ηis

“small” and strictly positive
For each pattern of the training set

{apply perturbation to all weights;
weight update;}

• Stochastic error descent (Alspector et al., 1993, 1996)
Every weight perturbation pj,i

(n) is equal in value and random only in sign:

pertj,i
(n) can assume the values +1 or –1 with equal probability.

•

steppertp n
ij

n
ij

)(
,

)(
, =

)(
,

)(
,)(

,

,
)(

,,
,

)()(n
ijp

n
ij

p
n

ij

ijp
n

ijijp
ij pertsteppert

stepp
wpw

w ⋅∆−=
∆

−=
−+

−=∆ εηε
η

εε
η

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 28

NNs and
supervised learning

The Perturbation-based learning algorithm

To compute the synapse’s weight wj,i, we only need to compute ∆εp and to known pertj,i
(n).

steppertw n
ijpij

ηηεη =⋅∆⋅−=∆ '')(
,,

for(each epoch)
{set each pertj,i

(0) at a random value;
for(each pattern of the training set)

{Choose a pattern in random way and put it in input
to the network;

Feed-Forward phase;
Compute εp(wj,i);
Weight Perturbation;
Feed-Forward phase;
Compute εp (wj,i+step⋅pertj,i

(n));
Compute ∆wj,i=–η’⋅∆εp⋅pertj,i

(n);
WeightUpdate;
}

}

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 29

NNs and
supervised learning

The Perturbation-based learning algorithm

• Fan-in perturbation (Flower and Jabri, 1993)
For each pattern of the training set

{random selection of a neuron;
apply perturbation to all weights of the synapses that are connected in input of

neuron j;
weight update;}

∆w=-η(εp(w+ρj
(n))- εp(w)) ρj’(n)

where ρj
(n) is the perturbation matrix where only the elements pj,i corresponding to the

connections in input to neuron j are non null and ρj’(n) is the inverse matrix of elements 1/pj,i
(inverse of perturbation).

• Fan-out perturbation (Flower and Jabri, 1996)
For each pattern of training set

{random selection of a neuron;
apply perturbation to all weights of the synapses connected at the output of

neuron j;
weight update;}

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 30

NNs and
supervised learning

The Perturbation-based learning algorithm

∆w=-η(εp(w+ξj
(n))- εp(w))ξj’(n)

whereξj
(n) is the perturbation matrix where only the elements pj,i corresponding to the

connections leaving the neuron j are non null and ξj’(n) is the inverse matrix of elements 1/pj,i
(inverse of perturbation).

• Fan-in-out perturbation (Flower and Jabri, 1996)
For each pattern

{random selection of a neuron;
apply perturbation to all weights of the synapses feeding into and

leaving the neuron j;
weight update;}

∆w=-η(εp(w+ψj
(n))- εp(w)) ψj’(n) where ψj

(n) is the perturbation matrix where only the elements pj,i
corresponding to the connections that leave and feed the neuron j are non null and ψj’(n) is the
inverse matrix of elements 1/pj,i (inverse of perturbation).

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 31

NNs and
supervised learning

Adaptive parameters

Vogl’s acceleration technique [Vogl 1988]

The learning rate cannot be considered unique for all the synapses of the
network, but each synapse has its own learning rate, i.e. l

ij ,η

[] [] []1

1
,,

1,1,1 −

−

÷∈÷∈÷∈

=∆
ll

l
i

l
j

l
ij

l
ij

ninjNl

XW δη

⎪
⎩

⎪
⎨

⎧
>∆−
<∆+

=∆
otherwise 0

0 if
0 if

εη
ε

η b
a

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 32

NNs and
supervised learning

Improvements in the learning convergence speed

The weight update rule becomes:

The local learning rate value can be locally managed according to the sign of
the component of the gradient of the error function ():

– if the sign is equal during two consecutive iterations, the corresponding
learning rate is increased since a (local) minimum lies in such direction;

– if the sign changes during two consecutive iterations, the corresponding
learning rate is decreased, since probably a (local) minimum is being
skipped over.

ij
lij

l
ij W

tW
,

,,
)()1(

∂
∂

−=+∆
w(t)εη

l
j,i

p

W∂
∂)(wε

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 33

NNs and
supervised learning

Improvements in the learning convergence speed

γ

γ

η
ηηη

η
ηηη

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅=+

−=

)(
)()1(

)(
)()1(

)1()(

,

min

,,

,

max

,,

,,

t
tt

else
t

tt

tStSif

l
ij

l
ij

l
ij

l
ij

l
ij

l
ij

l
ij

l
ij

