Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004

Neural Networks and

supervised learning algorithms

e

[2 N

< Wecnadicetuonics - -

é oot bibe Maurizio Valle

McCulloch and Pitts model [1943]

* y =f(net), where variable input
N
netz(ZXiWiJ—(a ;
i=1 Xz

Input 4 Binary

output

Threshold (+1.-1)
device

pattern . 3

e Unsupervised learning Xa
[Hebb, 1949]

W, (t+2) =W, ;(t) + XY, P

Target value

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 1

Perceptron convergence procedure [Rosenblatt, 1961]

Example X3

/

» y >0, if the input vector
at iteration t
X(t) = (X,, X,) e class C,

decision boundary

wox +wx, -8 =0

ey <0, if the input vector
at iteration t
X(t) = (X,, X,) e class C,

M valle Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning

Perceptron convergence procedure [Rosenblatt, 1961]

* initialise weights W, (t=0) and ® to small random values
e present new input vector x(t) (t is the iteration index)
 calculate the actual output y(t)

» adapt weights according to:

Wi (t+1) =W, (t) +#7[d (t) - y(OIX; (1)

where 0 <m <1 and d(t) is the target value

* go to step 2 and repeat for the next pattern

M Val l e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 3

Minsky and Papert [1969]

Perceptron can only create linear decision regions

o) FATR)

| Figure 13. An example of the decision boundaries .
| formed by the perceptron convergence procedure with $_._ L *
| two classes. Samples from class A are represented by 0.0) o (1.0)
| circles and samples from class B by crosses. Lines re- i <

present decision boundaries after trials where errors

occurred and weights were adapted,

» X

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning

Widrow-Hoff algorithm [1960] (delta or adaline or
Widrow-Hoff or LMS rule)

The neuron transfer function f is made linear (ADAptive LINEar combiner,
ADALINE) or replaced by a threshold-logic non-linearity

£,(t)=(d,(t)—t,(t)* =(d,(t)- f[i X, (OW, (t)j)?pattern error index

i=1

M
€ ()= &,(t) totalerror index

p=1

» Steepest descent type learning algorithm (on-line or by-pattern)

oe, (t)
AW, (1) =W, (t+1) -W, (t) = - ——=
oW, (t)
M. Val I e Low Power DeBs;?QEITsr?:'nEeubelszzrjg_,Nze;éjl Applications ?U’:Zgr;ged learning

Widrow-Hoff algorithm [1960] (delta or adaline or Widrow-
Hoff or LMS rule)

O, (1)
oW, (1)

1 1
AW, (t) = E”(d o (=Y, O)X; (D)) f
» Steepest descent type learning algorithm (batch or by-epoch)

=—%(dp(t)—yp(t))(xi,p(t»f'

oe (t
AW, (t) =W, (t+1) - W, (t) = -7 _a\‘;"v_ ((t))
ai &,(t)
o (t) & P Y 8€p(t)__£M) |
8Wi(t) - 6Wi(t) _; 6Wi(t) B 2; (dp(t) yp(t))(xi,p(t))f

AW () = %nz (d, (1) =y,)X ,(O) f

i i icati NNs and
M. Valle Low Power Design Techniques and Neural Applications

Barcelona, Feb. 23-27 2004 supervised learning 6

Neuron transfer functions

& hard .- limiter (x)

M Val l e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning

Multi-Layer Networks

Input
pattern

 learning from experience

Why Neural Networks?

» generalising from examples

» developing solutions faster and with less reliance on domain expertise

» computational efficiency

* non-linearity

Xﬂ
M. valle o P Mmetlaming 8 M. valle o s P Speniedieamivg 9
e . e Typical business functions and neural computin
Identifying neural computing applications [Tarassenko P s f puting
1999] application areas [Tarassenko 1999]
g g
g 8
. . . . =} 2
« the solution of the problem cannot be explicitly described by an algorithm, o g |8 ¢ g
a set of equations or a set of rules |z fls|l5]| |2
g8 5 _g 3|3 | % %
. s | B35 %
 there is some evidence that an input-output mapping exists between a set 5 g g - g 3 | £
. . . w = .
of input variables x and corresponding output data y, such that y=f(x). o . 717 7
The form of f however is not known. .
Process manutacturing v v v
Retailing v v v
. . : - v
+ there should be a large amount of data available, i.e. many different Fnaneydsutance £ o4 =
examples with which to train the network. Enghesra ¢ L¥ Y
Production control v v v
Service v v
Treasury function v v
Sales and Marketing v 4
M. Valle Lo P O o i e s 10 M. Valle e e Seedinng 11

Multi-Layer Networks

¢ Richard and Lippmann (1991) showed that multi-layer neural networks
estimate the posterior probability P(C,/x) directly (i.e. the probability of
the class C, given the input vector x). This holds if:

— al-out-of-K output coding (so that t, = 1 if x belongs to C, and 0
otherwise) is used

— the weights are chosen so as to minimize a squared-error cost function.

Hidden QOutput

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 12

Multi-Layer Networks [Lippmann 1987]

€5 OF EXCLUSIVE OR | CLABSES WITH |MOST ﬂﬂmm.] |

STRUCTURE | DECISION MEGIONS PROBLEM MESHED REGIONS [REGION SHAFLCL |
SINGLE LAYER) ¥y i

HALF PLANE
f\ BOUNDED

oY
HYPERPLANE

WO
COMVER
OFtN
on
CLOSED
REGIONS

THREE LAYER

ARBITRARY
IComptesity

Lionitad Wy
Mumiee of Nedei)

Figure 14. Types of decision regions that can be formed
by single- and multi-layer perceptrons with one and two
layers of hidden units and two inputs. Shading denotes
decision regions for class A. Smooth closed contours
bound input distributions for classes A and B. Nodes in all
nets use hard limiting nonlinearities.

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 13

Some properties of MLP networks

o Ifx, =41 (x,=+1/0) (components of the input vector) and f=sgn(x) (hard
limiter) for the single output unit and f=tanh(x) (f=sigmoid(x)) for the
hidden units, then only one hidden layer suffices to represent any Boolean
function.

« To approximate a function F(x) to a given accuracy, at most two hidden
layers, with arbitrary accuracy being obtainable given enough neurons
per layer, are needed [Cybenko 1988].

« Only one hidden layer is enough to approximate any continuous function
[Cybenko 1989][Hornik et al., 1989].

M valle Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 14

How much hidden units?

* The number of training examples (i.e. input vectors in the training set P) should be
of the same order as the number of free parameters of the network. Given a I-J-K
MLP network, the number of weights W is: W=(I+1)J+(J+1)K; then P=W.

* Baum and Haussler (1989):
P=W/e
where g is an “accuracy parameter” (i.e. the fraction of patterns of the test set which

are incorrectly classified). For a good generalization the accuracy level “should
be” 90% corresponding to ¢=0.1 then: 10W=P

* Widrow and Lear (1990) argued that:
P >>W/K
In conclusion
e A lower bound for the number of training patterns P is: W=P
* A realistic upper bound might be P =10W

M Val l e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 15

Standard architecture of an N-layer Multi Layer Perceptron

network

.) . (o). .)

% [7) S — ¥
‘ XOK X ><: X e XN

- v > P e - ¥

_/ N _/
1% (hidden) layer 2" (hidden) layer N" (output) layer

M. Valle oo O s e s M s 16

The Back Propagation learning algorithm

» feedforward computations
| < | 1-1
a; = E W, X,

X; :';anh(a})
le[l+N],jell+n']ie[l+n""]

« error index for the pth pattern
N
1 . — N N
g,(W) Z—Z Xk =X,
2
=1

k

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 17

The Back Propagation learning algorithm

e error index

g (W):Z gp(w):%z nZJ[YkN - X

p=1 k=1

« weight update rule
| | | | |
AW (t+1) =W/, (t+1) W/ (t) = AW/ () + AW (1 1)

usually O<a<1

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 18

The Back Propagation learning algorithm

oe(w
 batch (by-epoch) AW. . = _UL
IYJ
. oW, ;
AW, =7 50X in the output layer
p=1
NP
AW =7>" &% in the hidden layers
p=1
: og, (W)
+ on-line (by pattern) AWi =
i

a pattern is presented at the input and then all weights are updated before the next pattern is
considered. If n is small enough, this clearly decreases the cost function at each step.

If the pattern are chosen in random order from the training set, it also makes the path
through weight-space stochastic allowing wider exploration of the cost surface.

M Val l e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 19

The Back Propagation learning algorithm

* on-line BP

oe (W) .
AWN =—p—° in the output layer
k,0 77 8Wk”\lu p y
| og, (W) . i
AW, =-n : in the hidden layers
' oW

ke[l+n]Ue[]_ n ‘1]
le[l+N-1, jel+n']ic[l+n""]

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning

20

The Back Propagation learning algorithm
« for the ki neuron of the output layer the error term is:

AWk’,\‘u =06 Xy

AW, =ns X ™
ke[l+=n"],voel+n""]
le[l+N-1], je[l+n']ie[l+n""]

in the output layer
in the hidden layers

« for the i™" neuron of the I™" hidden layer:

41 I+1 I+1 | n'*
_ 26‘9 (W) X\~ oay 6X Z |+1W|+1
i X 1+1 I+1 X 1 J
M. Val I e Low Power DeBsai‘?QEIT;ﬁ:?Eeu;szgrjg_,Nze;éjl Applications gj:zi,r;ged learning 27

The Back Propagation learning algorithm

« where D{' and D; are the derivatives of the neuron activation function with
respectto aY and a respectively

6XN

=1-tanh?*(a)') =1-(X')?

oX.
D' ZEIJ:1—tanh2(a',-)=1—(XD2

M valle Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning

22

The Back Propagation learning algorithm

« 1. Initialize the synaptic weights to small random values.

» 2. Present an input pattern (chosen randomly out of the training set) to the

network and compute the neuron outputs

» 3. Present the corresponding target output to the network and compute the error

terms for all neurons

» 4. Update the synaptic weight values

* 5. Go back to step 2 until the error &, is acceptably low (i.e. the given termination

condition/stopping criterion is satisfied).

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 23

The stopping criterion

Learning rate and momentum term

M. valle D s g 24 M. valle D s e e 29
The Perturbation-based learning algorithm The Perturbation-based learning algorithm
Based f)n the apprOX|_mat|on 01_‘ the error gradient by a finite difference « the algorithm performs gradient descent on average
 Weight perturbation (Jabri and Flower, 1992) « theerror index always decreases provided that the |p;; [2is “small” and nis
o “small” and strictly positive
Og, (W) <& (Wi + P) —&, (W) For each pattern of the training set
ow " {apply perturbation to all weights;
® weight update;}
ew,. +p..)—¢&,(w;;) .
AW, = —p 221 T pAT » Stochastic error descent (Alspector et al., 1993, 1996)
I n
p j,i() Every weight perturbation pjyi("> is equal in value and random only in sign:
» Stochastic error descent (Cauwenberghs, 1993)
" = pert. Vste
Aw=-n(g(w+ p)- & (W) pw pert; (™ can assume the Ratues P8l Wlst% Bqual probability.
where n is the iteration index p® is the perturbation matrix of elements p;; which are spatially and e W +p,")—e (W) Ag . .
temporally uncorrelated AW, === ; = —Tlﬁ pert; " = _%ep Ag,- pert,
2 i
E(p?,i p) =0 Siiknyinm) .
ow Power Design Techniques and Neural ication: NNs and ow Power Design Techniques and Neural ication: NNs and
M. valle Lo DBa?ce.:-on:, éb.523-37N2004l Aopticatons supi:,r;sed learning 26 M. valle towp DBagr’ce.:-on:, I=qel1.523-g7’\l2004I Roplcations supiravr;sed learning 27

The Perturbation-based learning algorithm

S . M =1
Aw,; =-n"Ae, - pert,; n step

To compute the synapse’s weight w;, we only need to compute Ag, and to known pert; ;™.

i

for(each epoch)
{set each pert;;(® at a random value;
for(each pattern of the training set)
{Choose a pattern in random way and put it in input
to the network;
Feed-Forward phase;
Compute &(w;;);
Weight Perturbation;
Feed-Forward phase;
Compute &, (w;;+step-pert;);
Compute Aw;;=—1"-As, pert;™;

WeightUpdate;
M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 28

The Perturbation-based learning algorithm

» Fan-in perturbation (Flower and Jabri, 1993)
For each pattern of the training set
{random selection of a neuron;

apply perturbation to all weights of the synapses that are connected in input of
neuron j;

weight update;}

AM/:'ﬂ(gp(W"p/n))' gp(VV)) Pj)

where p/”) is the perturbation matrix where only the elements Pi corresponding to the
connections in input to neuron j are non null and p/-’("/ is the inverse matrix of elements 1/p;;
(inverse of perturbation).

e Fan-out perturbation (Flower and Jabri, 1996)
For each pattern of training set
{random selection of a neuron;

apply perturbation to all weights of the synapses connected at the output of
neuron j;

weight update;}

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 29

The Perturbation-based learning algorithm

An=-i(g,(w+) g (M) &1
Whereg/") is the perturbation matrix where only the elements p;; corresponding to the
connections leaving the neuron j are non null and §j’(”) is the inverse matrix of elements 1/p;;
(inverse of perturbation).
» Fan-in-out perturbation (Flower and Jabri, 1996)
For each pattern
{random selection of a neuron;
apply perturbation to all weights of the synapses feeding into and
leaving the neuron j;
weight update;}

Aw=-1(g,(w+p{™)- (W) y; ™ where w{” is the perturbation matrix where only the elements p;;
corresponding to the connections that leave and feed the neuron j are non null and y/j-’(") is the
inverse matrix of elements 1/p;; (inverse of perturbation).

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 30

Adaptive parameters

Vogl’s acceleration technique [Vogl 1988]
+aif Ae<0
An=<-bn if Ae>0
0 otherwise

The learning rate cannot be considered unique for all the synapses of the
network, but each synapse has its own learning rate, i.e. 77;;

AW =7;,0,X;
lefi=N] jefisn']icf+n"]

M valle Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 31

Improvements in the learning convergence speed

The weight update rule becomes:

AWJ'I,i (t+1)) = -5, %

The local learning rate value can be locally managed according to the sign of
the component of the gradient of the error function (26,(W)):

ji

— if the sign is equal during two consecutive iterations, the corresponding
learning rate is increased since a (local) minimum lies in such direction;

— if the sign changes during two consecutive iterations, the corresponding
learning rate is decreased, since probably a (local) minimum is being
skipped over.

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 32

Improvements in the learning convergence speed

===
e ol _ I Lt 1
if SL(t) = S!.(t-D) = il I
L= —T
I I -
7+ =n;(t)] =
Uj,i(t) L —T | A
else t
—) ar
min
[| n
77j,i(t+1) =77,-,i(t)' |
ﬂj,i(t)
M. Valle LowPowerDsBs;?QEITsr?:'n::qeubelszzrjg_/Nzeg(;jlApplicatiuns ?U’:Zgr;ged learning

33

