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McCulloch and Pitts model [1943]

• y = f(net), where

• Unsupervised learning 
[Hebb, 1949]
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Perceptron convergence procedure [Rosenblatt, 1961]

Example

• y > 0, if the input vector 
at iteration t
x(t) = (x1 , x2 ) ∈ class C1 

• y < 0, if the input vector
at iteration t
x(t) = (x1 , x2 ) ∈ class C2
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Perceptron convergence procedure [Rosenblatt, 1961]

• initialise weights Wi (t=0) and Θ to small random values

• present new input vector x(t) (t is the iteration index)

• calculate the actual output y(t)

• adapt weights according to:

where 0 < η <1 and d(t) is the target value

• go to step 2 and repeat for the next pattern
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Minsky and Papert [1969]
Perceptron can only create linear decision regions
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Widrow-Hoff algorithm [1960] (delta or adaline or 
Widrow-Hoff or LMS rule)

The neuron transfer function f is made linear (ADAptive LINEar combiner, 
ADALINE) or replaced by a threshold-logic non-linearity

• Steepest descent type learning algorithm (on-line or by-pattern)

indexerror  pattern )()()(())()(()(
1

2 2) ⎟
⎠

⎞
⎜
⎝

⎛
−=−= ∑

=

N

i
iipppp tWtXftdtttdtε

indexerror   total)()(
1

 tt p

M

p
εε ∑

=

=

 
)(
)(

)()1()(
tW
t

tWtWtW
i

p
iii ∂

∂
−=−+=∆

ε
η

Low Power Design Techniques and Neural Applications
Barcelona, Feb. 23-27 2004M. Valle 6

NNs and 
supervised learning

Widrow-Hoff algorithm [1960] (delta or adaline or Widrow-
Hoff or LMS rule)

• Steepest descent type learning algorithm (batch or by-epoch)
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Neuron transfer functions
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Multi-Layer Networks
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Why Neural Networks?

• learning from experience

• generalising from examples

• developing solutions faster and with less reliance on domain expertise

• computational efficiency

• non-linearity
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Identifying neural computing applications [Tarassenko
1999]

• the solution of the problem cannot be explicitly described by an algorithm, 
a set of equations or a set of rules

• there is some evidence that an input-output mapping exists between a set 
of input variables x and corresponding output data y, such that y=f(x). 
The form of f however is not known.

• there should be a large amount of data available, i.e. many different 
examples with which to train the network.
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Typical business functions and neural computing 
application areas [Tarassenko 1999]
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Multi-Layer Networks

• Richard and Lippmann (1991) showed that  multi-layer neural networks 
estimate the posterior probability P(Ck/x)  directly (i.e. the probability of 

the class Ck given the input vector x). This holds if:
– a 1-out-of-K output coding (so that tk = 1 if x belongs to Ck and 0 

otherwise) is used
– the weights are chosen so as to minimize a squared-error cost function. 
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Multi-Layer Networks [Lippmann 1987]
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Some properties of MLP networks

• If xk = ±1 (xk = +1/0 ) (components of the input vector) and f=sgn(x) (hard 
limiter) for the single output unit and f=tanh(x) (f=sigmoid(x)) for the 
hidden units, then only one hidden layer suffices to represent any Boolean 
function.

• To approximate a function F(x) to a given accuracy, at most two hidden 
layers, with arbitrary accuracy being obtainable given enough neurons 
per layer, are needed [Cybenko 1988].

• Only one hidden layer is enough to approximate any continuous function 
[Cybenko 1989][Hornik et al., 1989].
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How much hidden units?

• The number of training examples (i.e. input vectors in the training set P) should be 
of the same order as the number of free parameters of the network. Given a I-J-K 
MLP network, the number of weights W is: W=(I+1)J+(J+1)K; then P=W.

• Baum and Haussler (1989):
P=W/ε

where ε is an “accuracy parameter” (i.e. the fraction of patterns of the test set which 
are incorrectly classified). For a good generalization the accuracy level “should 
be” 90% corresponding to ε=0.1 then: 10W=P

• Widrow and Lear (1990) argued that:
P >> W/K

In conclusion
• A lower bound for the number of training patterns P is: W=P
• A realistic upper bound might be P =10W 
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Standard architecture of an N-layer Multi Layer Perceptron 
network
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The Back Propagation learning algorithm
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• feedforward computations

• error index for the pth pattern
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The Back Propagation learning algorithm

• error index

• weight update rule

usually 0<α<1
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The Back Propagation learning algorithm

• batch (by-epoch)

• on-line (by pattern)

a pattern is presented at the input and then all weights are updated before the next pattern is 
considered. If η is small enough, this clearly decreases the cost function at each step. 

If the pattern are chosen in random order from the training set, it also makes the path 
through weight-space stochastic allowing wider exploration of the cost surface.
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The Back Propagation learning algorithm

• on-line BP
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The Back Propagation learning algorithm
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• for the kth neuron of the output layer the error term is:

• for the ith neuron of the lth hidden layer:
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The Back Propagation learning algorithm

• where        and         are the derivatives of the neuron activation function with 
respect to          and         respectively
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The Back Propagation learning algorithm

• 1. Initialize the synaptic weights to small random values.

• 2. Present an input pattern (chosen randomly out of the training set) to the 

network and compute the neuron outputs 

• 3. Present the corresponding target output to the network and compute the error 

terms for all neurons

• 4. Update the synaptic weight values 

• 5. Go back to step 2 until the error εp is acceptably low (i.e. the given termination 

condition/stopping criterion is satisfied).
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The stopping criterion
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Learning rate and momentum term
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The Perturbation-based learning algorithm

Based on the approximation of the error gradient by a finite difference
• Weight perturbation (Jabri and Flower, 1992)

• Stochastic error descent (Cauwenberghs, 1993)
∆w=-η(εp(w+p(n))- εp (w)) p’(n)

where n is the iteration index, p(n) is the perturbation matrix of elements pj,i which are spatially and 
temporally uncorrelated 
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The Perturbation-based learning algorithm

• the algorithm performs gradient descent on average
• the error  index always decreases provided that the |pj,i |2 is “small” and ηis 

“small” and strictly positive
For each pattern of the training set

{apply perturbation to all weights;
weight update;}

• Stochastic error descent (Alspector et al., 1993, 1996)
Every weight perturbation pj,i

(n) is equal in value and random only in sign:

pertj,i
(n) can assume the values +1 or –1 with equal probability.

•
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The Perturbation-based learning algorithm

To compute the synapse’s weight wj,i, we only need to compute ∆εp and to known pertj,i
(n).

steppertw n
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for(each epoch)
{set each pertj,i

(0) at a random value;
for(each pattern of the training set)

{Choose a pattern in random way and put it in input 
to the network;

Feed-Forward phase;
Compute εp(wj,i);
Weight Perturbation;
Feed-Forward phase;
Compute εp (wj,i+step⋅pertj,i

(n));
Compute ∆wj,i=–η’⋅∆εp⋅pertj,i

(n);
WeightUpdate;
}

}
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The Perturbation-based learning algorithm

• Fan-in perturbation (Flower and Jabri, 1993)
For each pattern of the training set

{random selection of a neuron;
apply perturbation to all weights of the synapses that are connected in input of 

neuron j;
weight update;}

∆w=-η(εp(w+ρj
(n))- εp(w)) ρj’(n) 

where ρj
(n) is the perturbation matrix where only the elements pj,i corresponding to the 

connections in input to neuron j are non null and ρj’(n) is the inverse matrix of elements 1/pj,i
(inverse of perturbation).

• Fan-out perturbation (Flower and Jabri, 1996)
For each pattern of training set

{random selection of a neuron;
apply perturbation to all weights of the synapses connected at the output of 

neuron j;
weight update;}
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The Perturbation-based learning algorithm

∆w=-η(εp(w+ξj
(n))- εp(w))ξj’(n) 

whereξj
(n) is the perturbation matrix where only the elements pj,i corresponding to the 

connections leaving the neuron j are non null and ξj’(n) is the inverse matrix of elements 1/pj,i
(inverse of perturbation).

• Fan-in-out perturbation (Flower and Jabri, 1996)
For each pattern

{random selection of a neuron;
apply perturbation to all weights of the synapses feeding into and 

leaving the neuron j;
weight update;}

∆w=-η(εp(w+ψj
(n))- εp(w)) ψj’(n) where ψj

(n) is the perturbation matrix where only the elements pj,i
corresponding to the connections that leave and feed the neuron j are non null and ψj’(n) is the 
inverse matrix of elements 1/pj,i (inverse of perturbation).
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Adaptive parameters

Vogl’s acceleration technique [Vogl 1988]

The learning rate cannot be considered unique for all the synapses of the 
network, but each synapse has its own learning rate, i.e.  l
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Improvements in the learning convergence speed

The weight update rule becomes:

The local learning rate value can be locally managed according to the sign of 
the component of the gradient of the error function (           ):

– if  the sign is equal during two consecutive iterations, the corresponding 
learning rate  is increased since a (local) minimum lies in such direction;

– if the sign changes during two consecutive iterations, the corresponding 
learning rate is decreased, since probably a (local) minimum is being 
skipped over.
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Improvements in the learning convergence speed
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