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Neural Networks and

supervised learning algorithms
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McCulloch and Pitts model [1943]

* y =f(net), where variable input
N
netz(ZXiWiJ—(a ;
i=1 Xz

Input 4 Binary

output

Threshold (+1.-1)
device

pattern . 3

e Unsupervised learning Xa
[Hebb, 1949]

W, (t+2) =W, ;(t) + XY, P

Target value
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Perceptron convergence procedure [Rosenblatt, 1961]

Example X3

/

» y >0, if the input vector
at iteration t
X(t) = (X,, X,) e class C,

decision boundary

wox +wx, -8 =0

ey <0, if the input vector
at iteration t
X(t) = (X,, X,) e class C,
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Perceptron convergence procedure [Rosenblatt, 1961]

* initialise weights W, (t=0) and ® to small random values
e present new input vector x(t) (t is the iteration index)
 calculate the actual output y(t)

» adapt weights according to:

Wi (t+1) =W, (t) +#7[d (t) - y(OIX; (1)

where 0 <m <1 and d(t) is the target value

* go to step 2 and repeat for the next pattern
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Minsky and Papert [1969]

Perceptron can only create linear decision regions

o) FATR)

| Figure 13. An example of the decision boundaries .
| formed by the perceptron convergence procedure with $_._ L *
| two classes. Samples from class A are represented by 0.0) o (1.0)
| circles and samples from class B by crosses. Lines re- i <

present decision boundaries after trials where errors

occurred and weights were adapted,

» X
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Widrow-Hoff algorithm [1960] (delta or adaline or
Widrow-Hoff or LMS rule)

The neuron transfer function f is made linear (ADAptive LINEar combiner,
ADALINE) or replaced by a threshold-logic non-linearity

£,(t)=(d,(t)—t,(t)* =(d,(t)- f[i X, (OW, (t)j )?pattern error index

i=1

M
€ ()= &,(t) totalerror index

p=1

» Steepest descent type learning algorithm (on-line or by-pattern)

oe, (t)
AW, (1) =W, (t+1) -W, (t) = - ——=
oW, (t)
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Widrow-Hoff algorithm [1960] (delta or adaline or Widrow-
Hoff or LMS rule)

O, (1)
oW, (1)

1 1
AW, (t) = E”(d o (=Y, O)X; (D)) f
» Steepest descent type learning algorithm (batch or by-epoch)

=—%(dp(t)—yp(t))(xi,p(t»f'

oe (t
AW, (t) =W, (t+1) - W, (t) = -7 _a\‘;"v_ ((t))
ai &,(t)
o (t) & P Y 8€p(t)__£M ) |
8Wi(t) - 6Wi(t) _; 6Wi(t) B 2; (dp(t) yp(t))(xi,p(t))f

AW () = %nz (d, (1) =y, )X ,(O) f

i i icati NNs and
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Neuron transfer functions

& hard .- limiter (x)
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Multi-Layer Networks

Input
pattern

 learning from experience

Why Neural Networks?

» generalising from examples

» developing solutions faster and with less reliance on domain expertise

» computational efficiency

* non-linearity

Xﬂ
M. valle o P Mmetlaming 8 M. valle o s P Speniedieamivg 9
e . e Typical business functions and neural computin
Identifying neural computing applications [Tarassenko P s f puting
1999] application areas [Tarassenko 1999]
g g
g 8
. . . . =} 2
« the solution of the problem cannot be explicitly described by an algorithm, o g |8 ¢ g
a set of equations or a set of rules |z fls|l5]| |2
g8 5 _g 3|3 | % %
. . . . . s | B35 %
 there is some evidence that an input-output mapping exists between a set 5 g g - g 3 | £
. . . w = .
of input variables x and corresponding output data y, such that y=f(x). o . 717 7
The form of f however is not known. .
Process manutacturing v v v
Retailing v v v
. . : - v
+ there should be a large amount of data available, i.e. many different Fnaneydsutance £ o4 =
examples with which to train the network. Enghesra ¢ L¥ Y
Production control v v v
Service v v
Treasury function v v
Sales and Marketing v 4
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Multi-Layer Networks

¢ Richard and Lippmann (1991) showed that multi-layer neural networks
estimate the posterior probability P(C,/x) directly (i.e. the probability of
the class C, given the input vector x). This holds if:

— al-out-of-K output coding (so that t, = 1 if x belongs to C, and 0
otherwise) is used

— the weights are chosen so as to minimize a squared-error cost function.

Hidden QOutput
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Multi-Layer Networks [Lippmann 1987]

€5 OF EXCLUSIVE OR | CLABSES WITH  |MOST ﬂﬂmm.] |
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Figure 14. Types of decision regions that can be formed
by single- and multi-layer perceptrons with one and two
layers of hidden units and two inputs. Shading denotes
decision regions for class A. Smooth closed contours
bound input distributions for classes A and B. Nodes in all
nets use hard limiting nonlinearities.
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Some properties of MLP networks

o Ifx, =41 (x,=+1/0) (components of the input vector) and f=sgn(x) (hard
limiter) for the single output unit and f=tanh(x) (f=sigmoid(x)) for the
hidden units, then only one hidden layer suffices to represent any Boolean
function.

« To approximate a function F(x) to a given accuracy, at most two hidden
layers, with arbitrary accuracy being obtainable given enough neurons
per layer, are needed [Cybenko 1988].

« Only one hidden layer is enough to approximate any continuous function
[Cybenko 1989][Hornik et al., 1989].
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How much hidden units?

* The number of training examples (i.e. input vectors in the training set P) should be
of the same order as the number of free parameters of the network. Given a I-J-K
MLP network, the number of weights W is: W=(I+1)J+(J+1)K; then P=W.

* Baum and Haussler (1989):
P=W/e
where g is an “accuracy parameter” (i.e. the fraction of patterns of the test set which

are incorrectly classified). For a good generalization the accuracy level “should
be” 90% corresponding to ¢=0.1 then: 10W=P

*  Widrow and Lear (1990) argued that:
P >>W/K
In conclusion
e A lower bound for the number of training patterns P is: W=P
* A realistic upper bound might be P =10W
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Standard architecture of an N-layer Multi Layer Perceptron

network
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The Back Propagation learning algorithm

» feedforward computations
| < | 1-1
a; = E W, X,

X; :';anh(a})
le[l+N],jell+n']ie[l+n""]

« error index for the pth pattern
N
1 . — N N
g,(W) Z—Z Xk =X,
2
=1

k
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The Back Propagation learning algorithm

e error index

g (W):Z gp(w):%z nZJ[YkN - X

p=1 k=1

« weight update rule
| | | | |
AW (t+1) =W/, (t+1) W/ (t) = AW/ () + AW (1 1)

usually O<a<1
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The Back Propagation learning algorithm

oe(w
 batch (by-epoch) AW. . = _UL
IYJ
. oW, ;
AW, =7 50X in the output layer
p=1
NP
AW =7>" &% in the hidden layers
p=1
: og, (W)
+ on-line (by pattern) AWi =
i

a pattern is presented at the input and then all weights are updated before the next pattern is
considered. If n is small enough, this clearly decreases the cost function at each step.

If the pattern are chosen in random order from the training set, it also makes the path
through weight-space stochastic allowing wider exploration of the cost surface.
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The Back Propagation learning algorithm

* on-line BP

oe (W) .
AWN =—p—° in the output layer
k,0 77 8Wk”\lu p y
| og, (W) . i
AW, =-n : in the hidden layers
' oW

ke[l+n ]Ue[]_ n ‘1]
le[l+N-1, jel+n']ic[l+n""]
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The Back Propagation learning algorithm
« for the ki neuron of the output layer the error term is:

AWk’,\‘u =06 Xy

AW, =ns X ™
ke[l+=n"],voel+n""]
le[l+N-1], je[l+n']ie[l+n""]

in the output layer
in the hidden layers

« for the i™" neuron of the I™" hidden layer:

41 I+1 I+1 | n'*
_ 26‘9 (W) X\~ oay 6X Z |+1W|+1
i X 1+1 I+1 X 1 J
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The Back Propagation learning algorithm

« where D{' and D; are the derivatives of the neuron activation function with
respectto aY and a respectively

6XN

=1-tanh?*(a)') =1-(X')?

oX.
D' ZEIJ:1—tanh2(a',-)=1—(XD2
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The Back Propagation learning algorithm

« 1. Initialize the synaptic weights to small random values.

» 2. Present an input pattern (chosen randomly out of the training set) to the

network and compute the neuron outputs

» 3. Present the corresponding target output to the network and compute the error

terms for all neurons

» 4. Update the synaptic weight values

* 5. Go back to step 2 until the error &, is acceptably low (i.e. the given termination

condition/stopping criterion is satisfied).
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The stopping criterion

Learning rate and momentum term
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The Perturbation-based learning algorithm The Perturbation-based learning algorithm
Based f)n the apprOX|_mat|on 01_‘ the error gradient by a finite difference « the algorithm performs gradient descent on average
 Weight perturbation (Jabri and Flower, 1992) « theerror index always decreases provided that the |p;; [2is “small” and nis
o “small” and strictly positive
Og, (W) <& (Wi + P ) —&, (W) For each pattern of the training set
ow " {apply perturbation to all weights;
® weight update;}
ew,. +p.. )—¢&,(w;;) .
AW, = —p 221 T pAT » Stochastic error descent (Alspector et al., 1993, 1996)
I n . . . . . .
p j,i( ) Every weight perturbation pjyi("> is equal in value and random only in sign:
» Stochastic error descent (Cauwenberghs, 1993)
" = pert. Vste
Aw=-n(g(w+ p)- & (W) pw pert; (™ can assume the Ratues P8l Wlst% Bqual probability.
where n is the iteration index p® is the perturbation matrix of elements p;; which are spatially and e W +p,")—e (W) Ag . .
temporally uncorrelated AW, === ; = —Tlﬁ pert; " = _%ep Ag,- pert,
2 i
E( p?,i p) =0 Siiknyinm) .
ow Power Design Techniques and Neural ication: NNs and ow Power Design Techniques and Neural ication: NNs and
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The Perturbation-based learning algorithm

S . M =1
Aw,; =-n"Ae, - pert,; n step

To compute the synapse’s weight w;, we only need to compute Ag, and to known pert; ;™.

i

for(each epoch)
{set each pert;;(® at a random value;
for(each pattern of the training set)
{Choose a pattern in random way and put it in input
to the network;
Feed-Forward phase;
Compute &(w;;);
Weight Perturbation;
Feed-Forward phase;
Compute &, (w;;+step-pert; );
Compute Aw;;=—1"-As, pert;™;

WeightUpdate;
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The Perturbation-based learning algorithm

» Fan-in perturbation (Flower and Jabri, 1993)
For each pattern of the training set
{random selection of a neuron;

apply perturbation to all weights of the synapses that are connected in input of
neuron j;

weight update;}

AM/:'ﬂ(gp( W"p/n))' gp( VV)) Pj )

where p/”) is the perturbation matrix where only the elements Pi corresponding to the
connections in input to neuron j are non null and p/-’("/ is the inverse matrix of elements 1/p;;
(inverse of perturbation).

e Fan-out perturbation (Flower and Jabri, 1996)
For each pattern of training set
{random selection of a neuron;

apply perturbation to all weights of the synapses connected at the output of
neuron j;

weight update;}

M Val I e Low Power Design Techniques and Neural Applications NNs and
- Barcelona, Feb. 23-27 2004 supervised learning 29

The Perturbation-based learning algorithm

An=-i(g,(w+ ) g (M) &1
Whereg/") is the perturbation matrix where only the elements p;; corresponding to the
connections leaving the neuron j are non null and §j’(”) is the inverse matrix of elements 1/p;;
(inverse of perturbation).
» Fan-in-out perturbation (Flower and Jabri, 1996)
For each pattern
{random selection of a neuron;
apply perturbation to all weights of the synapses feeding into and
leaving the neuron j;
weight update;}

Aw=-1(g,(w+p{™)- (W) y; ™ where w{” is the perturbation matrix where only the elements p;;
corresponding to the connections that leave and feed the neuron j are non null and y/j-’(") is the
inverse matrix of elements 1/p;; (inverse of perturbation).
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Adaptive parameters

Vogl’s acceleration technique [Vogl 1988]
+aif  Ae<0
An=<-bn if Ae>0
0 otherwise

The learning rate cannot be considered unique for all the synapses of the
network, but each synapse has its own learning rate, i.e. 77;;

AW =7;,0,X;
lefi=N] jefisn']icf+n"]
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Improvements in the learning convergence speed

The weight update rule becomes:

AWJ'I,i (t+1)) = -5, %

The local learning rate value can be locally managed according to the sign of
the component of the gradient of the error function ( 26,(W) ):

ji

— if the sign is equal during two consecutive iterations, the corresponding
learning rate is increased since a (local) minimum lies in such direction;

— if the sign changes during two consecutive iterations, the corresponding
learning rate is decreased, since probably a (local) minimum is being
skipped over.
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Improvements in the learning convergence speed

===
e ol _ I Lt 1
if SL(t) = S!.(t-D) = il I
L= —T
I I -
7+ =n;(t) ] =
_Uj,i(t)_ L —T | A
else t
— ) ar
min
[ | n
77j,i(t+1) =77,-,i(t)' |
_ﬂj,i(t)_
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