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Why Low Power?
N— S

* Heat dissipation is a big problem .

* Variation of device parameter and
performance with temperature change

* Will become the bottleneck of the design.
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\ Low Power Ieclinlques ,

e 2.8 GHz Pentium 4 - 68.4 W
o 2.2 GHz Mobile Pentium 4 - 30 W
e /33MHz PowerPC 7445 - 10 W
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Low Power Techniques
~—._

* General Good Design Practices

* Process shrink

* \Voltage scaling

* Transistor sizing

* Clock gating/transition reduction

* Power down testability blocks when not in the test mode
* Power down the functional blocks

* Minimize sequential elements

* Check for any slow slope signals in your design and fix them accordingly
* Downsize all non-critical path circuits

* Reduce loading on the clock

* Parallelism

e Adiabatic circuits
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Why Adiabatic Logic?
~_ M

* Difficulties in removing heat from high-
speed VLSI circuit

* Battery-operated applications —
portable devices

* Energy usage restriction

* Lower switching noise



- Power.Dissipation.in Y
\. Conventional CMOS Inverter /

* DC power supply
* When input is low, energy drawn:

E=CV2 Vdd
* Energy stored in capacitor: H&
E=(/2)CV2

» When input is high, half of "™ {@m%[
energy lost! =l
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Power Dissipation in Adiabatic

N—_

* Depends on configuration, will see in soon
IN this presentation
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What Is Adiabatic Switching?
~—_ S

* Adiabatic switching is also called energy-
recovery

= “Adiabatic” describe thermodynamic reversible
process that exchanges no heat with the
environment

* Keep potential drop switching device small

* Allow the recycling of energy to reduce the
total energy drawn from the power supply
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Adiabatic Logic
.. 222 = ___  /

* A universal adiabatic logic gate must include the
following components:

= (1) The generalized spring which may undergo
deformation caused by a driving force from the driver;

= (2) The switch which determines a logic transition in
response to the driving force, depending on the input
Information:;

*= (3) The communication channel through which state
Information can be conveyed to other gates.
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Requirements for Adiabatic Logic

N S

* Requirement A:

* The voltages between current-carrying electrodes
must be zero when the transistors switch to the on
state. Otherwise, some of the energy that has been
accumulated by C will be dissipated.

* Requirement B:

= The conductive coupling between the capacitor C and
the driver must exist at any time. This is not the case
In dynamic gates, in which the generalized
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Classification of Circuits
... S

* Rank-3: Asymptotically Adiabatic Logic
* Rank-2: Quasi Adiabatic Logic
* E=CV,?
* Rank-1: Diode Charging Logic
* E=CVyVip
* Rank O0: Conventional CMOS
* E=CV,



( Classification.of Adiabatic. >
\ Circuits /

| Adiabatic logic I
‘Asymptotically adiabatic logic \ ‘ Quasi-adiabatic logic \
[ |

I‘ Static logic I I Dynamic logic I




£ Classification.of Adiabatic.>
\ Circuits /

Asymptotically adiabatic logic

Method used Method used
to create three states to retain information
Push—pull Driving with Driving with Reverse
operation split-level pulses nested pulses computation
_l_..%s}'nfhmtmn.h - Pjpc]mg
L‘I]"IC]‘LI’[[L‘IH g]m]';mnn
2Nn2Np-2n Inlp Logically reversible gates

20, 21] (Figs. 1,2) | [19] (Fig. 3) [20-23] (Figs. 4, 3) Type of logic




£ Classification.of Adiabatic.>
\ Circuits /

Static quasi-adiabatic logic {adiabatic rank 2)

Asynchronous | Pipeline operation . Mode
operation (flip-flop memory and true and complementary signals) | of aperation

Type of logic| 1nlp [23] 2n-2n2p [24] (Fig. 7) | CAL [25, 26] :
: - | (Fig.6) 4-phase driving ! I-phase driving !

___________________




£ Classification.of Adiabatic.>
\ Circuits /

Dyvnamic quasi-adiabatic logic

Method to precharge
load capacitor

Precharging via Precharging via
a rectifier (adiabatic rank 1) a transistor (adiabatic rank 2)

Information storage Information storage Push—pull

in the output capacitor in internal capacitors operation

1-phase 4-phase Bootstrapped charging

driving driving of the output capacitor

(adiabatic rank 3)
A L.

REL [29, 30] | [ADL [31, 32] . HCnMOS [28] (Fig. 8) . ECRL [33] (Fig. 12)
(Figs. 9, 10} (Fiz. 11) : 2-phase driving : 4-phase driving

_____________________
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Adiabatic Families

* Partially Adiabatic Logic
= 2N2P [/ 2N-2N2P
= CAL (Clocked CMOS Adiabatic Logic)
= TSEL (True Single Phase Adiabatic)
= SCAL (Source-coupled Adiabatic Logic)

* Fully Adiabatic Logic
* PAL (Pass-transistor Adiabatic Logic)
= Split-level Charge Recovery Logic (SCRL)



e,

o
o
e

e
foo

Zo
foo

Za

e

=

L
e
e
b

poce

i
s
b

i
&

o
by
pro
pros
pros
Fea
L

o

Za

o
b
e
fos
oy
o

[out

PC

out

2N2P Inverter



] ©

—
LL
~~

PCK

|
JE AL

5

F1
1L
FO

Signal waveform

2N-2N2P Inverter



CAL Inverter

* Cascades require single-phase clock and two
auxiliary square-wave clocks
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TSEL Inverter
R

* Cascades require single-phase sinusoidal power clock
* Two DC voltages ensure high-speed operation
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SCAL Inverter

* Cascades require a single controller power clock
* Speed can be tuned individually
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PAL Inverter
. I

* Cascades require two-phase clock
* Fully adiabatic at the cost of high speed
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PAL Inverter



SCRL

* Split-level Charge Recovery Logic
(SCRL)
@1 [Pl
i b
x4
5 T

121 P1

SCRL version of Adiabatic Buffer
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* Quasi-Static Energy Recovery Logic (QSERL)
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Energy Consumption Per Cycle (pJ)
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Technology Tradeoffs
N— S

* Advantages
= Energy saving of 76% to 90%

= Two-order of magnitude reduction in switching
noise

* Disadvantages

= Lower-speed operation, for example, the
experiment frequency is only up to 200MHZ

= Larger Circuit Area
= Memory Requirements






Future Trends
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Future Trends
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Cooling cost vs Thermal dissipation
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Technology Trend

Future Trends
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Applications
—

* What would be the applications of such
a device?

= Automated deep-space probes travelling
far from the sun, hence no solar power.

= Personal portable computers.

= Data Gathering devices undersea or
underground.

= Medical implants with human body.
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Implantin
the subretinal space
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Medical implants

Tritonia diomedea MEMS probe tip,
amplifier brain

visceral
cavity

memory battery microcontroller,
A/D, cache

Intracellular neuronal
recording system:
Stand-alone implantable
microsystem with probe
tips, amplifier, signal
compression, and data
storage.
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Temporal Release

—— Conventional
Delayed

Predetermined Adverse effects




L. .CMOS Current Amplifier.for.. >
\ Biological Sensors /

IpF
||
I

_,E-Il-l"

" ph2 phl Res

D e
2pF | 0pF

+ '
=
=
[ ]
b=
T
[ ]
Tl =
R
— T

]
N
]
N
]




a N\

Proposed Project Schedule
. @ M

Final Decision for Application - March 31%
ProjectPresentation |- | April28" |
Final Report

1
5
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