

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

1

Report No:

AN101
Title:

SPI and JTAG In-System Programming (ISP)
guidelines for the Atmel ATmega AVR FLASH
Microcontroller Family
Author: Date: Version Number:

John Marriott

12th June 2007 1.07

Abstract:

This application note describes the connections required to implement In-System Programming of the
Atmel ATmega AVR FLASH Microcontroller Family using either the SPI or the JTAG Programming
Interfaces. The document describes the physical connections required from the programmer to the
target Microcontroller and also details the different ISP Header Connector pin-outs which are currently
available.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be
changed without prior notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not
convey nor imply any license under patent or other industrial or intellectual property rights

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

2

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

3

Contents
1.0 Introduction .. 4

1.1 Programmers supported... 4
1.2 Device Support ... 5
1.3 SPI Algorithm Overview ... 7
1.4 JTAG Algorithm Overview .. 7

2.0 SPI Programming Algorithm... 9
2.1 Overview of the SPI Programming Interface .. 9
2.2 Atmel AVR Microcontroller - SPI Implementation... 10
2.3 Atmel AT90S AVR Microcontrollers.. 11
2.4 Atmel ATmega AVR Microcontrollers ... 12

2.4.1 Overview of possible ATmega pin-outs ... 12
2.4.2 ATmega AVR - Standard SPI Pin-out .. 13
2.4.3 ATmega AVR - UART SPI Pin-out... 14

2.5 ISP Header Selection Chart (by header) .. 15
3.0 JTAG Programming Algorithm ... 17

3.1 Overview .. 17
3.2 Upgrading your Equinox Programmer to support JTAG... 17

3.2.1 Purchasing a JTAG License .. 17
3.2.2 How do I enable the programmer for JTAG?... 17

3.3 Upgrading an Epsilon5 or FS2003 to support JTAG .. 18
3.4 Upgrading a PPM3-MK2 Programmer to support JTAG .. 18
3.5 Entering the License String to upgrade your programmer.. 19
3.6 Using the JTAG Port for Debugging and Programming ... 20
3.7 JTAG Programming Schematic .. 21
3.8 Atmel 10-way JTAG Header (JTAG Interface) ... 22
3.9 Creating a JTAG Programming Project .. 24

3.9.1 Overview.. 24
3.9.2 Creating an EDS (Development project).. 24
3.9.3 Testing a JTAG Project in Development (EDS) Mode ... 25

4.0 Upgrading your Programmer Firmware... 26
4.1 Overview .. 26
4.2 How to check your programmer firmware version .. 26
4.2 How to upgrade from firmware version 2.xx ... 26
4.3 How to upgrade from firmware version 3.xx ... 26

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

4

1.0 Introduction
This application note describes the connections required to implement In-System Programming of the
Atmel AT90S and ATmega AVR FLASH Microcontroller Family using either the SPI or JTAG
Programming Interface. The document describes the physical connections required from the
programmer to the target Microcontroller and also details the different ISP Header Connector pin-out
which are currently available.

Please note:

• The Atmel ATtiny AVR Family features both a ‘Low Voltage’ and ‘High Voltage’ Serial
Programming Modes. Please refer to AN104 for full details.

1.1 Programmers supported
This Application Note covers any Equinox programmer which is capable of SPI programming of Atmel
microcontrollers. The table below lists the Equinox programmers and also details whether each one
can be upgraded for JTAG programming.

Fig. 1.1 Equinox Programmer – SPI and JTAG ISP Support

Programmer SPI
algorithms

JTAG algorithms Upgrade Order Code

EPSILON5 YES UPGRADE EPSILON5-UPG3
FS2000A YES UPGRADE + JTAG Module with

RESET Switch
FS2000A-UPG7

FS2003 YES UPGRADE FS2003-UPG7
PPM3 MK1 YES N/A N/A
PPM3 MK2 YES UPGRADE + IO-CON-3 JTAG

Connector Module
PPM3A1-UPG7

Micro-ISP Series IV YES N/A N/A
Micro-ISP Series IV LV YES N/A N/A
Activ8r(AVR) YES N/A N/A
PRO101 YES N/A N/A

Key:

• YES - Enabled as standard
• UPGRADE – Chargeable license upgrade required
• TBA – To be announced
• N/A – Not available

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

5

1.2 Device Support
The table below lists the Atmel ATmega devices which are currently supported by the Equinox range
of programmers. The SPI Algorithms are supplied as standard with all programmers, where as the
JTAG algorithms require an upgrade license to be purchased to enable the JTAG Library of devices.
Some ATmega devices such as the ATmega8(L) and ATmega161(L) do not have a JTAG port and so
cannot support JTAG programming.

Device SPI

algorithm
JTAG

algorithm
Minimum
firmware
version

SPI programming
pin-out

AT90CAN32 YES YES 3.04 Check datasheet
AT90CAN64 YES YES 3.04 Check datasheet
AT90CAN128 YES YES 3.04 Check datasheet

ATmega8(L) YES No JTAG

port
3.04 MOSI / MISO / SCK

ATmega16(L) YES YES 3.04 MOSI / MISO / SCK
ATmega323(L) YES YES 3.04 MOSI / MISO / SCK
ATmega32(L) YES YES 3.04 MOSI / MISO / SCK
ATmega64(L) YES YES 3.04 RXD / TXD / SCK
ATmega103(L) YES No JTAG

port
3.04 RXD / TXD / SCK

ATmega128(L) YES YES 3.04 RXD / TXD / SCK
ATmega161(L) YES No JTAG

port
3.04 MOSI / MISO / SCK

ATmega162(L) YES YES 3.04 MOSI / MISO / SCK
ATmega164P-20 YES No JTAG

port
3.04 Check datasheet

ATmega164PV-10 YES No JTAG
port

3.04 Check datasheet

ATmega169(L) YES YES 3.04 RXD / TXD / SCK
ATmega169PV-8 **YES **YES 3.04 RXD / TXD / SCK
ATmega324P-20 YES **YES 3.04 Check datasheet
ATmega324PV-10 YES **YES 3.04 Check datasheet
ATmega329V-8 YES YES 3.04 Check datasheet
ATmega3290V-8 YES YES 3.04 Check datasheet
ATmega3290-16 YES YES 3.04 Check datasheet
ATmega406 YES YES 3.04 Check datasheet
 Check datasheet
ATmega640-16 YES YES 3.04 Check datasheet
ATmega640V-8 YES YES 3.04 Check datasheet
ATmega644-10 YES **YES 3.04 Check datasheet
ATmega644P YES **YES 3.04 Check datasheet
ATmega644PV YES **YES 3.04 Check datasheet
ATmega6490 YES **YES 3.04 Check datasheet
ATmega6490V YES **YES 3.04 Check datasheet

ATmega1280V-8 **YES **YES 3.04 RXD / TXD / SCK
ATmega1280-16 **YES 3.04 RXD / TXD / SCK
ATmega1281V-8 **YES **YES 3.04 RXD / TXD / SCK
ATmega2560-16 **YES **YES 3.04 RXD / TXD / SCK
ATmega2560V-8 **YES **YES 3.04 RXD / TXD / SCK

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

6

ATmega2561-16 **YES **YES 3.04 RXD / TXD / SCK
ATmega2561V-8 **YES **YES 3.04 RXD / TXD / SCK

Please note:

• ** Devices with greater than 128kb of FLASH memory require a firmware upgrade to version
3.01 or above in order to support programming of the upper 128kb.

• Please see section 4 for instructions on updating your programmer firmware.
• As a rule of thumb, only Atmel Atmega AVR devices with 16k bytes of FLASH or greater will

feature the JTAG Programming Interface.
• Please check the Device support section on the Equinox website for an up-to-date Device

Support List.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

7

1.3 SPI Algorithm Overview
The SPI algorithm is a simple 3-wire interface which can be used to program most AVR
Microcontrollers. The advantages and disadvantages of this algorithm are detailed below.

Advantages:

• The SPI algorithm is supported by almost all Atmel AVR microcontrollers including AT90S,
AT90CANxxx, ATtiny and ATmega devices. This means that the same Programming Interface
can be used on any products containing any AVR microcontroller.

• The SPI Programming Interface uses only 3 SPI pins (MOSI, MISO, SCK) and the RESET pin.
• The SPI pins can be used to drive other circuitry such as LED’s and switches on the Target

Board as well as being used for ISP purposes. However, this will require careful design on the
Target Board to ensure that the programming signals are not compromised.

• In SPI Mode, it is possible to reprogram a single byte of the EEPROM area without having to
perform a Chip Erase first.

• The SPI algorithms are supported as standard on all Equinox ISP Programmers.

Disadvantages

• In general terms, the SPI algorithm is 3-4 times slower than the JTAG algorithm.
• When using the SPI algorithm, the clock used during programming is supplied from either the

AVR Internal RC Oscillator or from an external crystal / resonator. The programming SPI
speed is completely dependent on the speed of this oscillator.

• If the oscillator speed is slow, then the maximum SPI speed is seriously limited and the overall
programming will be very slow.

• If the Clock Selection Fuses are incorrectly programmed in SPI mode, then the chip may no
longer have a valid oscillator and so will not respond to the programmer. This can render the
chip unprogrammable except by physically removing it from the Target Board and using either
a JTAG or Parallel programmer to resurrect the correct Fuse Settings.

1.4 JTAG Algorithm Overview
The JTAG algorithm provides a method of performing high-speed programming of an Atmel Atmega
AVR microcontroller. The same JTAG port can also be used for on-chip debugging of code using the
Atmel JTAG-ICE Debugger. The advantages and disadvantages of the JTAG algorithm are detailed
below.

Advantages:

• The JTAG algorithm is approximately 3-4 times faster at programming compared to the SPI
algorithm.

• The programming time using JTAG for the EEPROM is significantly faster than the SPI
algorithm because in JTAG mode a ‘Page’ of EEPROM is programmed at a time rather than a
single byte. Each byte may take eg. 9ms to program in SPI mode, where as a whole page of
eg. 4 bytes may take 9ms to program in JTAG mode.

• The JTAG algorithm uses the same ‘JTAG Port’ as the Atmel JTAG-ICE Debugger. This
means that the same port can be used for both debugging during the development phase and
also programming during the production phase of the product.

• With the JTAG algorithm, the programming clock is supplied by the programmer and JTAG
logic inside the Target AVR device does not require any other clocking. This means that the
chip is not dependent on the settings of the ‘Clock Selection Fuses’ in JTAG Mode.

• In JTAG mode is it possible to change the ‘Clock Selection Fuses’ to any value and still
program the chip. (with the exception of the ‘JTAGEN’ Fuse)

• It is possible to use the JTAG port of the Target Microcontroller to perform in-circuit testing of
the microcontroller and surrounding circuitry. This testing is performed by shifting Test Data
through the JTAG port of the Target Microcontroller. A JTAG Test System is required to
perform this testing. It is not supported by any Equinox Programmer or the Atmel JTAG ICE.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

8

• It is possible to daisy-chain multiple JTAG devices on the JTAG bus and then select to
program a particular device. This functionality is not currently supported by Equinox.

Disadvantages

• The JTAG Programming Interface uses 5 pins: TCK, TDI, TDO, TMS and RESET.
• The JTAG pins of the microcontroller are not designed for off-board use and should not be

shared with any other circuitry on Target Board. This means that the JTAG port pins must be
dedicated for programming / debugging.

• In JTAG mode the EEPROM is divided into ‘Pages’ rather than ‘Single Bytes’. It is therefore
more complicated to program a single byte in the EEPROM as the entire page (usually 4 or 8
bytes) must be read back and then the single byte overlaid on top of this data and finally the
entire page is then re-programmed back into the EEPROM.

• In JTAG Mode, it is not possible to re-program any location in the EEPROM which is not 0xFF
without first performing a Chip Erase operation. This means that if the EEPROM already
contains any data, it is not possible to re-program this data without erasing the entire chip first.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

9

2.0 SPI Programming Algorithm
2.1 Overview of the SPI Programming Interface
The SPI Programming Interface is a simple synchronous 3-wire communications bus which is
commonly used for control / data transfer between a Master Processor and a Slave Peripheral such
as an external SPI memory device – see figure 2.1.

Fig 2.1a – SPI Master / Slave example

MOSI

SCK

MISO

Chip Select

SPI
Peripheral

Device
(SLAVE)

S
P
I

P
O
R
T

MOSI

SCK

MISO

MOSI

SCK

MISO

SPI
Master
Device

(MASTER)

Chip Select

Fig 2.1b – SPI Signal names and directions

Signal Name Signal description Signal direction
(from Master)

MOSI Master OUT, Slave In Output
MISO Master IN, Slave OUT Input
SCK Serial Clock Output
Chip Select (CS) Chip Select Output

Data is transferred from the Master to the Slave using the MOSI (Master OUT, Slave In) signal line.
The Slave transfers data back to the Master using the MISO (Master IN, Slave OUT) signal line. The
data transfer is clocked by the SCK signal line which is generated by the Master on the SPI bus. The
Slave uses the SCK signal to know when to sample the MOSI signal for valid data and when to output
valid data on the MISO signal line.

Most SPI Slave devices have a ‘Chip Select’ signal which the Master asserts to select a particular
Slave device on the SPI bus. In the example above with only one Slave SPI device, the Master would
still have to assert the Chip Select line in order to communicate with the Slave device.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

10

2.2 Atmel AVR Microcontroller - SPI Implementation
Atmel have chosen the SPI interface to implement fast In-System Programming (ISP) of their AT90S,
ATmega and ATtiny AVR Microcontroller families. This implementation allows the on-chip FLASH,
EEPROM, Configuration Fuses and Security Fuses of a target AVR Microcontroller to be In-System
Programmed using a suitable external ISP Programmer or an-board SPI Master Controller – see fig
2.2a.

Fig 2.2a – ISP Programming Implementation of Atmel AVR Microcontrollers

MOSI

SCK

MISO

RESET/

Atmel
AVR

Microcontroller
(SPI SLAVE)

S
P
I

P
O
R
T

MOSI

SCK

MISO

MOSI

SCK

MISO

Device
Programmer

(SPI MASTER)

RESET
Control pin

Fig 2.2b – Programmer / Microcontroller - SPI Signal names and directions

Signal Name Signal description Signal direction
(from Programmer)

Signal direction
(from Microcontroller)

MOSI Master OUT, Slave In Output Input
MISO Master IN, Slave OUT Input Output
SCK Serial Clock Output Input
RESET Chip Select Output Input

The external Device Programmer is the SPI Bus Master and the AVR Microcontroller on the Target
System is the SPI Slave. The RESET control signal from the programmer is used to force the Target
Microcontroller to enter the so-called AVR ‘Serial Programming Mode’. For Atmel AVR
Microcontrollers, the programmer must drive the RESET pin LOW and then send a command on the
SPI bus to enter programming mode. This has the effect of resetting the target Microcontroller so it is
no longer running firmware (i.e. the user application ceases to execute).

Once the Target Device is in ‘Serial Programming Mode’, the external programmer can transfer data
to / from the target AVR device across the SPI bus. At the end of the programming cycle, the
programmer simply creates a RESET pulse and then the device should start to run the firmware
which has been programmed into it.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

11

2.3 Atmel AT90S AVR Microcontrollers
The Atmel AT90S AVR Microcontroller Family use the standard SPI pins (MOSI, MISO, SCK) for In-
System Programming (ISP) – see fig. 2.3.

Fig 2.3a AT90Sxxxx AVR – ISP Connections

MOSI

SCK

MISO

Vcc

Vss

RESET

PROG_RESET

PROG_MOSI

PROG_SCK

PROG_MISO

Atmel
AT90Sxxxx

AVR
Microcontroller

PROG_VCC

PROG_GND

Reset
Circuit

S
P
I

P
O
R
T

Fig 2.3.b – AT90S AVR Microcontroller - SPI Signal names and directions

Programmer
Signal Name

Signal description Signal
direction
(from
Programmer)

Connect to
AVR
Microcontroller
Pin

Signal direction
(from
Microcontroller)

PROG_MOSI Master OUT, Slave In Output MOSI Input
PROG_MISO Master IN, Slave OUT Input MISO Output
PROG_SCK Serial Clock Output SCK Input
PROG_RESET RESET Output RESET Input

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

12

2.4 Atmel ATmega AVR Microcontrollers
2.4.1 Overview of possible ATmega pin-outs
The majority of devices in the Atmel ATmega AVR family conform to the standard SPI pin-out for In-
System Programming using the MOSI, MISO and SCK pins of the target device. However, there are
also a few devices which use the TXD pin as MISO and the RXD pin as MOSI during In-System
Programming. These derivatives are referred to as ‘UART SPI Pin-out’ devices. Special care must be
taken to route the programmer MOSI / MISO pins to the correct pins of the target AVR device
otherwise during In-System Programming will not function.

Please refer to the ‘Device Support’ table in section 1.2 for details of which ATmega devices feature
either the ‘Standard’ or ‘UART’ SPI pin-out. Please look up the device you are trying to program in the
table and then refer to relevant section for the correct ISP pin-out.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

13

2.4.2 ATmega AVR - Standard SPI Pin-out
This pin-out is compatible with all ATmega devices which use the MOSI and MISO pins for In-System
Programming.

Fig. 2.4.2a ATmega – Standard Pin-out - ISP connections

MOSI

SCK

MISO

Vcc

Vss

RESET

PROG_RESET

PROG_MOSI

PROG_SCK

PROG_MISO

Atmel
ATmega

AVR
Microcontroller

(Standard
pin-out)

PROG_VCC

PROG_GND

Reset
Circuit

S
P
I

P
O
R
T

Fig 2.4.2b – ATmega AVR – Standard Pin-out - SPI Signal names and directions

Programmer
Signal Name

Signal description Signal
direction
(from
Programmer)

Connect to
AVR
Microcontroller
Pin

Signal direction
(from
Microcontroller)

PROG_MOSI Master OUT, Slave In Output MOSI Input
PROG_MISO Master IN, Slave OUT Input MISO Output
PROG_SCK Serial Clock Output SCK Input
PROG_RESET RESET Output RESET Input

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

14

2.4.3 ATmega AVR - UART SPI Pin-out
This pin-out is compatible with the Atmel ATmega 64(L), ATmega103(L), ATmega128(L) and
ATmega169(L) devices which use the TXD and RXD pins for SPI during In-System Programming.
The standard SPI MOSI and MISO pins are not used at all during In-System Programming and can be
freely connected to other SPI devices.

2.4.3a ATmega – Standard Pin-out - ISP connections

RXD

SCK

TXD

Vcc

Vss

RESET

PROG_RESET

PROG_MOSI

PROG_SCK

PROG_MISO

Atmel
ATmega

AVR
Microcontroller

(UART
pin-out)

PROG_VCC

PROG_GND

Reset
Circuit

S
P
I

P
O
R
T

Fig 2.4.3b – ATmega AVR – Standard Pin-out - SPI Signal names and directions

Programmer
Signal Name

Signal description Signal
direction
(from
Programmer)

Connect to
AVR
Microcontroller
Pin

Signal direction
(from
Microcontroller)

PROG_MOSI Master OUT, Slave In Output RXD* Input
PROG_MISO Master IN, Slave OUT Input TXD* Output
PROG_SCK Serial Clock Output SCK Input
PROG_RESET RESET Output RESET Input
* Please note – The TXD and RXD pins must be used for ISP instead of the MISO and MOSI pins.

Special Considerations

1. The TXD and RXD pins must be used for ISP instead of the MISO and MOSI pins.
2. For the ATmega103(L) device only, the ATmega103 MISO pin (pin 13) is active during In-

System Programming even though this pin is not actually used for programming. If this pin is
used as an output make sure that whatever it is connected to can cope with the pin toggling
during ISP. It may also be necessary to insert a current limiting resistor in this line.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

15

2.5 ISP Header Selection Chart (by header)
The FOUR ISP Headers featured on the most Equinox ISP Programmers are detailed in the table
below. Please refer to the section indicated in the ‘refer to section’ column for specific details of each
header.

ISP

Header
Description / Function Refer to

section
ISP Header Pin-out

1 J3 Atmel 6-way ISP Header

Header J6 can have THREE different pin-outs depending on which Target Device is to be
programmed. See (2a), (2b) and (2c).

2a J6(a) Equinox 10-way Header(a)

Device support:
Atmel AT90S, ATmega, ATtiny,
AT89S devices

2b J6(b) Equinox 10-way Header(a)

Device support:
Atmel ATtiny11/12/15
High Voltage (+12V Vpp)
Programming Mode

2c J6(c) Equinox 10-way Header(b)

Device support:
Atmel Wireless T89C51Rx2
Philips P89C51Rx2 / 66x

3 J7 Atmel 10-way Header

Device support:
Atmel AT90S, ATmega, ATtiny,
AT89S devices

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

16

4 J8 Atmel 10-way JTAG Header

Device support:
Atmel ATmega32/128 + any
new devices with JTAG port

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

17

3.0 JTAG Programming Algorithm
3.1 Overview
The JTAG Programming Interface provides a method for both In-System Debugging and In-System
Programming of Atmel ATmega AVR Microcontrollers. The JTAG Interfaces uses an industry-
standard set of signals to provide the connection between the programmer/debugger and the AVR
device. However, the actual JTAG Header used by Atmel and Equinox is specific to Atmel AVR JTAG
programming and will not match JTAG connectors for other manufacturer’s devices.

In the development environment, the JTAG Interface can be used for In-System Debugging of the
code running on the actual Target System. This method of operation requires the use of the Atmel
‘JTAG-ICE MK1 or MK2’ which is an In-System Debugger. Using this equipment, it is possible to
download code (firmware) to a Target Chip and then execute this code under PC control. The
Debugger Software allows you to set breakpoints in the code, read / write memory locations, look at
register contents etc.

In a production environment, the JTAG Interface can be use for high-speed In-System Programming
(ISP) of the Target AVR Microcontroller. This method of operation requires the use of any Equinox
ISP Programmer which has been enabled to support the ‘ATmega JTAG’ algorithms.

3.2 Upgrading your Equinox Programmer to support JTAG
The JTAG algorithms are not supported as standard on any Equinox programmers. It is necessary to
purchase a ‘License Upgrade’ for JTAG support from Equinox. Equinox will then send you a ‘JTAG
Upgrade License String’ which will upgrade your programmer to support JTAG programming.

3.2.1 Purchasing a JTAG License
All Equinox ISP programmers require the purchase of a ‘License Upgrade’ to enable JTAG support.
Please see the table in section 1.1 for the relevant upgrade for your programmer.

3.2.2 How do I enable the programmer for JTAG?
To enable your programmer to support JTAG ISP programming, please purchase the relevant JTAG
Upgrade from Equinox or an Equinox distributor:

1. If you purchase the upgrade directly from Equinox
• Equinox will email you a ‘JTAG License String’.
• This string can be entered directly into the <Enter License> screen in EQTools.

2. If you purchase the upgrade from a distributor

• The distributor will send you the Upgrade Pack by courier.
• Within the Upgrade Pack you will find an Upgrade Form with a Code String on it.
• Email this Code String plus your programmer Serial Number to support@equinox-

tech.com
• Equinox will then send you a ‘JTAG License String’ which is keyed to your

programmer Serial Number.
• This string can be entered directly into the <Enter License> screen in EQTools.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

18

3.3 Upgrading an Epsilon5 or FS2003 to support JTAG
To upgrade an Epsilon5 or FS2003 programmer to support JTAG, please follow the steps below:

• Order a JTAG License from Equinox
• Enter the ‘JTAG Upgrade License String’ given to you by Equinox into EQTools
• Make sure you have the required version of Programmer Firmware to support the device you

wish to program.
• Plug the 10-way ISP cable supplied with the programmer into the ‘J8 – JTAG-10’ ISP Header

on the programmer.
• Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board
• You are now ready to program a Target Chip via JTAG.

3.4 Upgrading a PPM3-MK2 Programmer to support JTAG
To upgrade a PPM3-MK2 programmer to support JTAG, please follow the steps below:

• Order a ‘PPM3-MK2 JTAG upgrade’ from Equinox TechnologiesLicense from Equinox
• Enter the ‘JTAG Upgrade License String’ given to you by Equinox into EQTools
• The JTAG upgrade also includes a new ‘I/O Connector Module’ for the PPM3-MK2 called the

‘I/O-CON-3’. This module has a JTAG 10-way header which has the same pin-out as the
JTAG-ICE.

• Make sure you have the required version of Programmer Firmware to support the device you
wish to program.

• Plug the ‘I/O-CON-3’ module into the PPM-MK2 programmer
• Plug the 10-way ISP cable supplied with the programmer into the ‘JTAG’ ISP Header on the

‘I/O-CON-3’ module.
• Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board
• You are now ready to program a Target Chip via JTAG

EQ-IOCON-3

I/O Connector Module 3 (JTAG) – Fast Connect Version
I/O connector module for In-System Programming (ISP) of Atmel microcontrollers
using JTAG protocol

Features:

• Plugs into suitable Equinox programmer e.g. PPM3 Module
• Atmel 10-way JTAG IDC ISP connector (same as JTAG-ICE)
• Atmel 6-way IDC ISP Header
• Equinox 10-way IDC ISP header
• Single-in-line header with all programmer I/O brought out for wire-wrapping

to bed-of-nails probe wires
• Screw terminals for power connections
• Target Vcc Status LED
• Link to connect / isolate the programmer Vcc from the Target Vcc

Please note
The ‘Atmel AVR JTAG License’ (Order code: PPM3A1-UPG7) is also required to
enable the PPM3 to program Atmel AVR devices via JTAG.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

19

3.5 Entering the License String to upgrade your programmer
Once you have received the License String from Equinox, please follow the steps below to apply the
upgrade to your programmer:

• Launch EQTools
• From the top menu bar, select <Programmer><Programmer Info>

 the Programmer Information screen is displayed
• Click the <Enter License> button

 The <Enter License Key> screen is displayed.

Enter the License String you were sent by Equinox

• Click <OK>
 EQTools should acknowledge that the attached programmer has been upgraded.

• Click <OK>
• If you now check the Programmer Info screen, you should find that the entry for

‘ATmega JTAG ISP’ is now ENABLED.
• Your programmer is now upgraded to support JTAG programming of Atmel AVR

Microcontrollers.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

20

3.6 Using the JTAG Port for Debugging and Programming
The JTAG port of the ATmega AVR Microcontroller can be used for both debugging and programming
purposes. The Equinox ‘JTAG ISP Header’ pin-out found on all Equinox ISP Programmers uses the
same pins as the Atmel ‘JTAG ICE MK1 / MK2’ Debugger so it is possible to use the same connector
/ cabling for both programming and debugging.

Fig. 3.6 JTAG ISP 10-way IDC Header

The RESET pin of the AVR Microcontroller should be brought out to the ISP Header. It is not actually
required for the JTAG algorithm as the control of programming initiated via a JTAG command.
However, the programmer / Atmel JTAG-ICE can use the RESET pin to RESET the Target AVR
microcontroller to ensure that the AVR JTAG port is not driving any I/O pins which could cause
contention during programming. The JTAG-ICE also needs control of the RESET pin to force the AVR
microcontroller to execute code when in debugging mode.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

21

3.7 JTAG Programming Schematic
The diagram below details the connections between the Equinox Programmer JTAG connector and
the JTAG Port on the Target AVR Microcontroller.

Fig 3.7a – ATmega AVR – JTAG Programming Interface connections

TCK

TDI

TDO

TMS

Vcc

Vss

RESET

PROG_RESET

PROG_TCK

PROG_TDI

PROG_TDO

PROG_TMS

Atmel
ATmega

Microcontroller

PROG_VCC

PROG_GND

Reset
Circuit

J
T
A
G

P
O
R
T

Fig 3.4b – ATmega AVR – JTAG Programming Interface - signal names and directions

Programmer
Signal Name

Signal description Signal
direction
(from
Programmer)

Connect to
AVR
Microcontroller
Pin

Signal direction
(from
Microcontroller)

PROG_TCK Test Clock Pin Output TCK Input
PROG_TDI Test Data Input Output TDI Input
PROG_TDO Test Data Output Input TDO Output
PROG_TMS Test Mode Select Input TMS Output
PROG_RESET RESET Output RESET Input

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

22

3.8 Atmel 10-way JTAG Header (JTAG Interface)
This connection method is suitable for interfacing any Equinox ISP Programmer to a Target System
which features the following:

• An Atmel device which features a JTAG ISP port e.g. ATmega128 / 323 / 64
• Atmel 10-way IDC JTAG Header
• This is the same header as used on the Atmel JTAG-ICE emulator.

To implement this connection, simply plug the 10-way ISP cable into the JTAG ISP Header and plug
the other end of the cable into the matching header on the Target System.

Figure 3.5 - Atmel 10-way JTAG IDC Header viewed from
above

Warning!
Connecting to the wrong ISP Header may cause
catastrophic damage to the Programmer & Target
System

Pin
No

Programmer
Pin name

Programmer
Input /
Output

Connect to
pin on
Target Device

Description

1 PROG_TCK O TCK JTAG TCK – Test Clock Signal pin
Clock signal from programmer to Target
Device JTAG port.

2 PROG_GND P GROUND Ground Connection
Common ground connection between
Programmer and Target System.

3 PROG_TDO I TDO JTAG TDO – Test Data Output pin
Data signal from Target device JTAG port
to programmer.

4 PROG_VCC P TARGET_VCC

Target Vcc Connection
- Pins 4 + 7 are physically connected
inside the programmer.
- Connects to Vcc rail of Target System.
- Pin referred to as VTref on Atmel JTAG-
ICE.

5 PROG_TMS O TMS JTAG TMS – Test Mode Select pin
Mode Select Signal from programmer to
Target Device JTAG port.

6 PROG_RESET O RESET Microcontroller RESET control signal
This pin connects to the main RESET pin
of the Target Microcontroller. This pin is
not strictly needed for JTAG programming,
but it can be used to RESET the Target
Device before and after programming.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

23

7 PROG_VCC P TARGET_VCC Target Vcc Connection
- See pin 4
- Pins 4 + 7 are physically connected
inside the programmer.

8 N/C O N/C Not Connected

9 PROG_TDI O TDI JTAG TDI – Test Data Input pin
Data signal from programmer to Target
Device JTAG port.

10 PROG_GND P GROUND Ground Connection
Common ground connection between
PROGRAMMER and Target System.

Key
O - Output from programmer to Target Device
I - Input to programmer from Target Device
P - Passive eg. GROUND and power rails
N/C - Not connected

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

24

3.9 Creating a JTAG Programming Project

3.9.1 Overview
A Programming Project for a ‘JTAG Device’ can be created in exactly the same as you would for an
‘SPI Device’ except that the device must now be selected from the JTAG Device Library. All the
settings are the same except for the <Pre-Programming State Machine> and the <JTAG Settings>.

3.9.2 Creating an EDS (Development project)
The simplest way to create a Programming Project for a JTAG device is to use the EDS
(Development Mode) Wizard as follows:

• Launch EQTools
• Select <Create a new Development (EDS) Project the EDS (Development) Wizard will

launch
• Click <Next> the <Select Device> screen will be displayed.

• Select and click the ‘+’ next to the ‘ATmega(JTAG) folder the list of JTAG devices will be
displayed

• Select the required device from the list and then click <OK> the device is now selected.
• Click <Next> and then fill in the remaining screens in the EDS Wizard
• At the end of the Wizard, click the <Test> button and save the project as eg.

ATmega256.ppm.

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

25

3.9.3 Testing a JTAG Project in Development (EDS) Mode
If you have clicked the <Test> button at the end of the EDS Wizard, then an EDS (Development
Mode) session will now launch.

i. Checking that the programmer can communicate with the Target Chip
To make sure that the programmer can communicate to the Target Chip, try reading back the Device
signature as follows:
Select the <FLASH> tab
Locate the <Check Sig> button on the right-hand side of the screen and click it.

 The programmer will now try to communicate with the Target Chip via the JTAG Interface
 If the Target Chip responds correctly, then EDS will report ‘Signature Read: Pass’.
 If the Target Chip does not respond, then EDS will report ‘Signature Read: Fail’. If this happens,

please check that the JTAG connections are correct between the programmer and the Target System
and that there is definitely power applied to the Target System.

ii. Programming the FLASH Area

• Select the <FLASH> tab
• Click the <Write> button
• Select the address range you wish to program
• EDS will automatically perform a Chip Erase by default which will erase the entire FLASH

before programming any data into it.
• Click <OK> to program the FLASH of the Target Chip.

iii. Programming the EEPROM Area

• Select the <EEPROM> tab
• Click the <Write> button
• Select the address range you wish to program
• EDS will automatically perform a Chip Erase by default which will erase the entire FLASH

before programming any data into it.
• The EEPROM address range which you are trying to program must contain 0xFF otherwise

the programmer will be unable to program the bytes.
• Click <OK> to program the EEPROM of the Target Chip.

-

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

26

4.0 Upgrading your Programmer Firmware
4.1 Overview
Many newer device algorithms require that the firmware of the programmer is upgraded to a specified
firmware version. If your programmer has a firmware version of less than 3.00, then will need to use
the Configit Utility to upgrade to firmware version 3.00. All firmware upgrades after version 3.00 can
be carried out using the Upload Wizard Utility.

4.2 How to check your programmer firmware version
Please follow the steps below to check what version of firmware your programmer is currently
running:

• Launch EQTools
• Select <Programmer> <Programmer Info>

 The firmware version should now be displayed. Eg. 3.00.

4.2 How to upgrade from firmware version 2.xx
If your programmer is running firmware version 2.xx, then it is necessary to upgrade it to version 3.00
first using the Configit – Firmware Update Utility.

Please follow the steps below to upgrade from firmware version 2.xx to version 3.00:

• Download the ‘Configit – Firmware Update Utility’ from the Equinox website
• Unzip the Configit utility into a temporary directory
• Consult the relevant instructional text file for your programmer. You can find these files

contained within the zip file.
• Follow the instructions in the zip file
• Configit will upgrade your programmer firmware to version 3.00 and it will also install a Boot

Loader into the programmer so all future upgrades can be carried out using the Upload
Wizard utility instead.

4.3 How to upgrade from firmware version 3.xx
If your programmer is already running firmware version 3.xx, then you can use the Upload Wizard
utility to upgrade your programmer firmware.

Please follow the steps below to upgrade from firmware version 3.xx to a higher version:

• Connect your programmer(s) to the PC COM port
• Power up the programmer(s)
• Download the latest ‘EQTools’ from the Equinox website
• Install this EQTools software
• The installation will install the latest ‘Firmware Update Projects’ into the following directory:

\program files\equinox\Firmware.
• Launch EQTools
• From the ‘Welcome to EQTools’ screen, select ‘Upload a Project Collection’ to a programmer
Or
• From the EQTools top menu bar, click the <Upload> icon

 The Upload Wizard will launch
• Click <Next> twice

 Detect Programmer(s) screen
• Click <Detect Programmer(s)> button

 a list of detected programmers is displayed
• Click <Next>

Application Note 101 – SPI & JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller
Family Version: V1.07 - 12th June 2007

27

 ‘Select a Project Collection to upload’ screen
• Click the <Browse> button and then browse to the following directory: \program

files\equinox\Firmware
• Select the relevant Firmware Update Collection file for your programmer and click <OK>
• Click <Next>

 The ‘Select Projects to Upload’ screen
• There should only be 1 project selected
• Click <Next>

 ‘The attached programmed contains the following Project Collection’ screen
• Click <Backup> if you wish to save the data already resident in the programmer.
• Click <Next>

 ‘Upload Project(s) to Programmer(s) screen
• Click the <Upload and Verify> button

 The firmware project will now be uploaded to the programmer
• Once uploaded, the programmer GREEN and YELLOW LED’s will light up for eg 10

seconds which indicates that the firmware is being upgraded.
• Once the firmware upgrade is finished, a message will be displayed to tell you the firmware

has been upgraded from version x..xx to y.yy.
• Click <OK> and then <Finish>

 The programmer firmware update is now finished.

