

Robotics!
Student Workbook

Version 1.5

Note regarding the accuracy of this text:
Accurate content is of the utmost importance to the authors and
editors of the Stamps in Class texts. If you find any error or
subject that needs clarification, please report it to
stampsinclass@parallaxinc.com.

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days from receipt of product. If you
discover a defect, Parallax will, at its option, repair or replace the merchandise, or refund the purchase price. Before returning the
product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the RMA number on the outside of the box used
to return the merchandise to Parallax. Please enclose the following along with the returned merchandise: your name, telephone
number, shipping address, and a description of the problem. We will return your product or its replacement using the same shipping
method used to ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is void if the product has been altered
or damaged.

Copyrights and Trademarks

This documentation is copyright 2001 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. If you decide to use the
name BASIC Stamp on your web page or in printed material, you must state: "BASIC Stamp is a registered trademark of Parallax, Inc."
Other brand and product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to, or replacement of equipment or property, or any costs of
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your
BASIC Stamp application, no matter how life threatening it may be.

Internet Access

We maintain Internet systems for your use. They can be used to obtain free Parallax software and documentation and also to
purchase Parallax products. These systems may also be used to communicate with members of Parallax and other customers. Access
information is shown below:

 E-mail: stampsinclass@parallaxinc.com
 Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion Lists

We maintain two e-mail discussion lists for people interested in BASIC Stamps (subscribe at http://www.parallaxinc.com under the
technical support section). The BASIC Stamp list server includes engineers, hobbyists, and enthusiasts. The list works like this: lots of
people subscribe to the list, and then all questions and answers sent to the list are distributed to all subscribers. It’s a fun, fast, and
free way to discuss BASIC Stamp issues and get answers to technical questions. This list generates about 40 messages per day.

The Stamps in Class list is for students and educators who wish to share educational ideas (subscribe at http://www.stampsinclass.com
under the discuss/e-mail section). This list works the same way the BASIC Stamp list server does, and it currently generates about five
messages per day.

Contents

Page i

Table of Contents

Preface ...v

Audience and Teacher’s Guides... vi
Copyright and Reproduction... vi
Typographical Conventions... vii
Robotics! Contributors... viii

Read this First - Before You Start..1

Check Your Servo Labels...1
Use the Right Power Supply..2
The New Stamps in Class Robotics! Web Page..2

Chapter #1: Assembling and Testing Your Boe-Bot ..5

About Robotics Competitions and Robot Development..5
Activity #1: Boe-Bot Parts and Tools...6
Activity #2: Boe-Bot Mechanical Assembly...9
Activity #3: Programming The Boe-Bot’s BASIC Stamp 2 On-Board Computer...19
Activity #4: Testing the Servos Individually..26
Activity #5: Running Both Servos...33
Activity #6: Tuning the Servos – Calibration in Software..35
Summary and Applications...38
Questions and Projects..40

Chapter #2: Programming the Boe-Bot to Go Places..43

Converting Instructions to Motion..43
Activity #1: Low Battery Indicator ...44
Activity #2: Controlling Distance..48
Activity #3: Maneuvers – Making Turns...53
Activity #4: Maneuvers – Ramping...55
Activity #5: Remembering Long Lists Using EEPROM..57
Activity #6: Simplify Navigation with Subroutines..62
Activity #7: All Together Now..64
Summary and Applications...70
Questions and Projects..71

Chapter #3: Tactile Navigation with Whiskers..75

Tactile Navigation..75

Contents

Page ii

Activity #1: Building and Testing the Whiskers..75
Activity #2: Navigation With Whiskers...82
Activity #3: Looking at Multiple Inputs as Binary Numbers...86
Activity #4: Artificial Intelligence and Deciding When You’re Stuck..90
Summary and Applications...95
Questions and Projects..96

Chapter #4: Light Sensitive Navigation with Photoresistors..99

Is Your Boe-Bot a Photophile or a Photophobe?...99
Activity #1: Building and Testing Photosensitive Eyes... 100
Activity #2: A Light Compass.. 104
Activity #3: Follow the Light!.. 107
Activity #4: Line Following.. 110
Summary and Applications.. 114
Questions and Projects... 115

Chapter #5: Object Detection Using Infrared.. 117

Using Infrared Headlights to See the Road... 117
Infrared Headlights.. 117
The Freqout Trick... 118
Activity #1: Building and Testing the New IR Transmitter/Detector ... 119
Activity #2: Object Detection and Avoidance.. 123
Activity #3: Navigating by the Numbers in Real-Time.. 126
Summary and Applications.. 130
Questions and Projects... 131

Chapter #6: Determining Distance Using Frequency Sweep.. 133

What’s a Frequency Sweep?.. 133
Activity #1: Testing the Frequency Sweep ... 133
Activity #2: The Drop-off Detector ... 140
Activity #3: Boe-Bot Shadow Vehicle... 145
Summary and Applications.. 151
Questions and Projects... 153

Appendix A: Boe-Bot Parts Lists and Sources ... 155

Appendix B: PC to Stamp Communication Trouble-Shooting .. 159

Appendix C: PBASIC Quick Reference... 161

Contents

Page iii

Appendix D: Building Servo Ports on the Rev A Board of Education ... 169

Appendix E: Board of Education Rev A Voltage Regulator Upgrade Kit... 173

Appendix F: Breadboarding Rules .. 175

Appendix G: Resistor Color Codes.. 177

Appendix H: Tuning IR Distance Detection .. 179

Appendix I: Boe-Bot Competition Maze Rules.. 185

Preface

Robotics! Version 1.5 • P a g e P a g e v

Preface

Robots are used in the auto, medical, and manufacturing industries, and of course, in many science

fiction films. Building and programming a robot is a combination of mechanics, electronics, and problem
solving. What you're about to experience with the Boe-Bot will be relevant to realistic applications using
robotic control, the only difference being the size and sophistication. The electronic control principles,
example program listings, and circuits you will use are very similar (and sometimes identical) to industrial
applications developed by engineers.

The word "robot" first appeared in a Czechoslovakian satirical play Rossum's Universal Robots by
Karel Capek in 1920. Robots in this play tended to be human-like. From this point it onward, it seemed that
many science fiction stories involved these robots revolting against human authority. This changed when
General Motors installed the first robots in its manufacturing plant in 1961. These automated machines
presented an entirely different image from the “human form” robots of science fiction.

This series of experiments will introduce you to basic robotic concepts using the Board of Education

Robot (hereafter the "Boe-Bot"). The experiments will begin with construction of the Boe-Bot. After that,
we'll program the Boe-Bot for basic maneuvers, and proceed to add sensors that will allow it to react to its
surroundings. The goal of this text is to show students how easy it is to become interested in and excited
about the fields of engineering, mechatronics, and software development as they design, construct and
program an autonomous robot. The Boe-Bot provides students with a project area to build and customize
their own mechanical, electrical, and programming projects. The use of a Boe-Bot to introduce
microcontroller circuits and interfacing is ideal since the outputs are almost entirely visible and easy to
customize.

The Board of Education Rev B, which serves as the Boe-Bot’s prototyping platform, was designed for

use with all five Stamps in Class series of experiments, including Robotics! The Board of Education, Rev B has
four servo ports, and this makes it possible to use four servos without taking up any space on the breadboard
prototyping area. Each port has a dedicated I/O line (P12, P13, P14, or P15 depending on the port), and each
can be used for controlling a servo. Each servo port supply is tied to Vin, the unregulated 6 V supply from the
battery pack, so use of a higher voltage supply is discouraged due to its tendency to overwork the servos. The
Board of Education Rev B also has two large capacitors that stabilize the BASIC Stamp’s power supply. They
ensure that the BASIC Stamp operates continuously, even when the servos are performing direction changes,
which could otherwise cause brownout conditions.

Preface

P a g e P a g e v iv i • Robotics! Version 1.5

The Robotics curriculum is periodically revised and updated based on feedback from students and
educators. If you would like to author an addition to this curriculum, or have ideas for improvements, please
send them to stampsinclass@parallaxinc.com. We'll do our best to integrate your ideas and assist you with
whatever technical support, sales support, or on-site training you need. If we accept your Boe-Bot project,
we'll send you a free Boe-Bot.

Audience and Teacher’s Guide

The Robotics curriculum was created for ages 15+ as a subsequent text to the “What’s a
Microcontroller?” guide. Like all Stamps in Class curriculum, this series of experiments teaches new
techniques and circuits with minimal overlap between the other texts. The general topics introduced in this
series are: basic Boe-Bot navigation under program control, navigation based on a variety of sensor inputs,
navigation using feedback and various control techniques, and navigation using programmed artificial
intelligence. Each topic is addressed in an introductory format designed to impart a conceptual
understanding along with some hands-on experience. Those who intend to delve further into industrial
technology, electronics or robotics are likely to benefit significantly from initial experiences with these topics.

Experts in their field independently author each set of Stamps in Class experiments, and they are

provided leeway in terms of format. As a result, the depth and availability of teachers’ guides varies. Please
contact Parallax, Inc. if you have any questions. If you are interested in contributing material to the Stamps in
Class series, please submit your proposal to stampsinclass@parallaxinc.com.

Copyright and Reproduction

Stamps in Class curriculum is copyright  Parallax 2001. Parallax grants every person conditional

rights to download, duplicate, and distribute this text without our permission. The condition is that this text
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond
the marginal cost of printing. Preferably, duplication would have no expense to the student. Any educational
institution wishing to produce duplicates for its students may do so without our permission. This text is
available in printed format from Parallax. Because we print the text in volume, the consumer price is often
less than typical xerographic duplication charges. This text is also available for free download from the
www.stampsinclass.com -> Downloads -> Educational Curriculum page in PDF format. Documents in this
format can be viewed and printed using Adobe Systems’ Acrobat Reader software available from
www.adobe.com. This software can also be installed directly from the Parallax CD.

This text may be translated to any other language with prior permission of Parallax, Inc.

Preface

Robotics! Version 1.5 • P a g e P a g e vii

Typographical Conventions

q Checklist instruction. The square box indicates a “how to” instruction. These instructions should be
followed sequentially, like a checklist, through each activity in this text.

ü
 TIP

Pay attention to and follow these instructions. They will make the activities easier
and save time.

FYI

This box contains useful information.

!

Caution: follow these instructions, or you may end up damaging your
hardware.

' PBASIC Program Listings.

' PBASIC excerpt from a program listing. This kind of excerpt
' always follows a paragraph of text explaining what it does
' and how it works.

PBASIC code in a paragraph of text takes the form of: command argument1, argument2, etc. Note that
the command is not italicized, but its arguments are.

Preface

P a g e P a g e v i i iv i i i • Robotics! Version 1.5

Robotics! Contributors

Chuck Schoeffler, Ph.D., authored portions
of the v1.2 text in conjunction with Parallax, Inc. At
that time, Dr Schoeffler was a professor at
University of Idaho's Industrial Technology
Education department. He designed the original
Board of Education Robot (Boe-Bot) shown here
along with many similar robot derivatives with
many unique functions. After several revisions,
Chuck's design was adopted as the basis of the
Parallax Boe-Bot that is used in this Text. Russ
Miller of Parallax designed the Boe-Bot based on
this prototype.

Andrew Lindsay, Parallax Chief Roboticist, wrote the majority of the v1.3 text with three goals in

mind. First, support all activities in the text with carefully written “how to” instructions. Second, expose the
reader and student to new circuit, programming, engineering and robotic concepts in each chapter. Third,
ensure that the experiments can be performed with a high degree of success using either the Rev A or Rev B
Board of Education. Parallax 2000 summer intern, Branden Gunn, assisted in the illustration of this revision.

Thanks to Dale Kretzer for editorial review, which was incorporated into v1.4. Thanks also to the

following Stamps in Class e-group participants for their input: Richard Breen, Robert Ang, Dwayne Tunnell,
Marc Pierloz, and Nagi Babu. These participants submitted one or more of the following: error corrections,
useful editorial suggestions, or new material for v1.4. Thanks to student Laura Wong and to Rob Gerber for
their respective contributions to v1.5. A special thanks to the Parallax, Inc. staff. Each and every member of
the Parallax team has in some way contributed to making the Stamps in Class program a success.

If you have suggestions, think you found a mistake, or would like to contribute an activity or chapter

to forthcoming Robotics! v1.6 or More Robotics! texts, contact us at stampsinclass@parallaxinc.com.
Subscribe and stay tuned to the Stamps in Class e-group for the latest in free hardware offers for Robotics!
contributions. See the Internet BASIC Stamp Discussion Lists section just before the Table of Contents for
information on how to subscribe.

Read This First – Before You Start

Robotics! Version 1.5 • P a g e P a g e 1

This Robotics! update contains three important messages:

1. Check your Servo Labels
2. Use the Right Power Supply
3. New Robotics! Web Site

Check Your Servo Labels

Starting in June, 2001, Parallax will ship all Robotics! kits with pre-modified servos. The Robotics! v1.5
student workbook is written exclusively for use with Boe-Bots that have pre-modified servos. Pre-modified
servos are labeled “PM”. If you have a Boe-Bot purchased before June, 2001, it most likely has standard
servos, which are labeled “STD”. If you have Standard servos, use the Robotics! v1.4 text. Both versions of the
Robotics! Student Workbook (v1.4 and v1.5) are available for free download from the www.stampsinclass.com
-> Robotics page.

If you have questions about whether your servos are pre-modified or standard, check the label on the front
of each servo against those shown in the Servo Identification Table below.

Servo Identification Table

Check the labeling on the servos in your Robotics!
kit.

Examples of the labeling for
pre-modified (PM) and
standard (STD) servos

Use Robotics! v1.5 (this text)

Use this student workbook only if the letters PM
are shaded on the label on the front of your servos.

Parallax
Servo

Use Robotics! v1.4

If the letters PM are not shaded or do not appear
on your servo’s labeling, use the Robotics v.1.4
Student Workbook available for free download
from the www.stampsinclass.com - > Robotics
page.

Read this First -
Before You Start

Read this First – Before You Start

P a g e P a g e 22 • Robotics! Version 1.5

Use the Right Power Supply

The Boe-Bot is designed for use with the battery
pack that comes with the Robotics! kits. When
selecting batteries for the Boe-Bot:

• Use only AA 1.5 V batteries with this
battery pack.

• Do not use 1.2 V rechargeable AA batteries.

!

Do not use a 9 V battery or AC
adaptor; it could damage your
Boe-Bot’s servo motors.

If you want to use a wall mount AC adaptor and
save batteries for autonomous navigation, make
sure your AC adaptor has these output
specifications (preferred values are bold):

Output:
• Voltage rating should be 6 V DC or 7.5 V DC
• Current rating from 600 mA to 1000mA (1 A)
• 2.1 mm center positive barrel plug

Make sure the AC adaptor’s label has the
center positive symbol

The New Stamps in Class Robotics! Web Page

Visit www.stampsininclass.com -> Robotics (see facing page). This page contains:

• Student project examples using the Boe-Bot
• More Boe-Bot activities for students after they have completed the Robotics! Student Workbook
• Boe-Bot application kits
• Boe-Bot application modules

Students and instructors are encouraged to submit projects to stampsinclass@parallaxinc.com for posting to
this resource site. Hobbyists and hardware developers are also encouraged to submit proposals, proofs of
concept, or completed and documented Boe-Bot application kits/add-on modules.

Read This First – Before You Start

Robotics! Version 1.5 • P a g e P a g e 3

From the www.stampsininclass.com -> Robotics Web Page

Coming Soon - Boe-Bot
Application Kits and
Modules:

Kit - IR Wheel Encoder

Module – Line Follower
Module - Compass

Robotics! is our most popular series. With over 10,000 Parallax Boe-
Bots in use around the world, it's clearly the light, sound and movement
that immediately captures the interest of the student. This is not a toy;
the concepts are directly applicable to microcontroller interfacing and
code development.

Follow these links to see:

Student Project Examples More Boe-Bot Activities

Boe-Bot Application Kits Boe-Bot Application Modules

Student Projects:

Title Author Overview

Maze
Runners

9th Grader,
Laura Wong

Includes introductions to the mechanical
problems associated with maze
navigation, state machine design for
maze navigation, and PBASIC program
examples used with the Boe-Bot.
Parallax grade: A+, Great work Laura!

Boe-Bot Applications Notes:

Title Concepts Introduced/Covered

Controlling Your
Boe-Bot with a
Universal Remote

Includes introduction to pulse width modulation for
communication, examples (with PBASIC
programming examples for the Boe-Bot) of reading
IR remote control codes, sending codes to your
Boe-Bot and controlling your Boe-Bot using the
Channel and Volume keys.

On/Off with Reset Use the Reset button on the Boe-Bot to toggle
Program Execution on/ff.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 5

 A b o u t R o b o t i c s C o m p e t i t i o n s a n d R o b o t D e v e l o p m e n tA b o u t R o b o t i c s C o m p e t i t i o n s a n d R o b o t D e v e l o p m e n t

Students in high schools and colleges preparing their entries for
various robotics competitions get first-hand exposure to the
engineering occupation. They start by working in teams developing a
Robot’s subsystems. A robot’s subsystems include its motors, sensor
arrays, microprocessor, and mechanical linkages. Next they test and
trouble-shoot the subsystems. Then comes system integration, the
process of making all the Robot’s subsystems work together.

Once the testing and trouble-shooting is finished at the subsystem level, a robot’s subsystems have to be
connected to and controlled by a microprocessor. The process of getting all the subsystems (including the
microprocessor) to work together to make the robot perform its assigned task list is called system
integration. System integration can be tricky to begin with, but robotics teams who skipped any of the testing
and troubleshooting at the subsystem level often have much larger problems with their system integration.
Many a late night can be spent trying to get the robot to work the way it’s supposed to. If bugs are hiding in
the subsystems when you’re trying to do system integration, it only compounds the problems.

Even when testing and trouble shooting is performed for each subsystem, it can still be the most difficult part
of robot development. For example, a group at a recent robotics competition spent five hours trying to get a
Sumo wrestling robot to work right with no luck. Later, by utilizing the BASIC Stamp’s Debug Terminal, the
testing and troubleshooting took less than 5 minutes.

FYI

The term BASIC Stamp will be used throughout this text to refer to the
BASIC Stamp 2.

Testing and troubleshooting at each phase of robot development is a skill that one gets better at with
practice. By following the instructions in the activities in this student workbook, you’ll get a taste of testing
and trouble shooting while putting your Boe-Bot together and getting it up and running. With practice, you’ll
enjoy more five-minute troubleshooting times and less of the five-hour variety.

Chapter #1:
Assembling
and Testing
Your Boe-Bot

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 66 • Robotics! Version 1.5

This chapter is separated into six activities:

1. Boe-Bot Parts and Tools
2. Boe-Bot Mechanical Assembly
3. Programming the Boe-Bot’s BASIC Stamp 2 On-Board Computer
4. Testing the Servos Individually
5. Running Both Servos
6. Tuning the Servos – Calibration in Software

Each of these activities involves discrete steps to get the Boe-Bot up and running. First, check to make sure
you have all your parts. Next, put the mechanical parts together. After that, test the microprocessor
subsystem. Then test each servo motor individually. Then, make the servo motors work in unison. Last, but
certainly not least, calibrate the pre-modified servos. By carefully following the instructions in these first six
activities, you ensure that your microprocessor and motor subsystems are working reliably. The task in later
chapters will be to develop and test a variety of sensors and integrate them with the rest of the Boe-Bot’s
subsystems. In Chapters 3-6, you’ll isolate and test the sensors before writing PBASIC programs that
integrate the sensor subsystems. For example, in chapter 3, you’ll first construct and test whiskers, sensors
that tell the Boe-Bot when it’s bumped into something. Once the testing and trouble-shooting is complete,
you’ll move on to writing PBASIC programs that make use of the whisker input signals for directing the Boe-
Bot’s motion.

 Activity #1: Boe-Bot Parts and Tools

Let’s get started by taking an inventory of the tools and parts we’ll need to get though the activities in this
student workbook. For starters, all activities in this student workbook require a personal computer (PC)
with the Windows 95/98/... operating system. You’ll also need a few simple hand tools, all of which are
common and can be found in most households, and school shops. They can also be purchased at local
hardware stores. The parts for the Boe-Bot are either included in the Boe-Bot full kit or in a combination of
the BOE Full Kit and the Robotics! parts kit. See Appendix A: Boe-Bot Parts Lists and Sources for more
information.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 7

The Simple Hand Tools

Recommended Tools

The top row of tools in Figure 1.1 are recommended
for the Activities in Chapter #1.

(1) Phillips #1 point screwdriver
(1) ¼” Combination wrench

The tools shown on the bottom row will come in
handy for the activities from Chapter #2 onward.

 (1) Small needle nose pliers

(1) Wire cutter/stripper

Figure 1.1: Recommended tools.

Boe-Bot Parts Inventory

q Before getting started, take an inventory of the parts in your kit. Appendix A: Boe-Bot Parts Lists and
Sources will tell you how many of each part should be in your kit. For help with identifying each part,
use the back cover of this text; it has labeled pictures of all of the Boe-Bot parts.

q Gather the parts shown in Figure 1.2 and set them aside for use as you go through the rest of the

activities in this chapter.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 88 • Robotics! Version 1.5

Chapter #1 Parts List:

A
B
C

D
E
F

G

H

I
J
K
L
M
N
O
P
Q
R

(1)
(1)
(2)

(2)
(1)
(2)

(1)

(1)

(2)
(1)
(10)
(2)
(8)
(8)
(4)
(1)
(4)
(1)

Boe-Bot chassis
Battery pack
Parallax Pre-Modified
Servos (labeled PM)
Plastic wheels
Polyethylene ball
9/32” Rubber
Grommets
13/32” Rubber
Grommet
Board of Education and
BASIC Stamp 2
O-ring tires
Cotter pin
4-40 locknuts
4-40 flathead screws
3/8” 4-40 screws
1/4” 4-40 screws
1/2" Standoffs
Serial cable
AA alkaline batteries
Parallax CD

 Figure 1.2: Chapter #1 parts.

B CA

D

E
F

G
H

I

J

K
L

M N O

P Q R

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 9

 Activity #2: Boe-Bot Mechanical Assembly

This section breaks assembling the Boe-Bot into steps. In each step, you gather a few of the parts, and then
assemble them so that they match the pictures. Each picture has instructions that go with it; make sure to
follow them carefully.

Mounting the Topside Hardware

Figure 1.3 shows the Boe-Bot chassis, topside
hardware and mounting screws.

Parts List:

(1) Boe-Bot Chassis
(4) Standoffs
(4) 1/4” 4-40 Screws
(2) 9/32” Rubber grommets
(1) 13/32” Rubber grommet

Figure 1.3: Chassis and topside hardware.

Assembly:

Figure 1.4 shows the topside hardware attached to the Boe-Bot chassis. Each rubber grommet has a groove
in its outer edge that holds it in place in a hole on the top of the Boe-Bot chassis.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 1 01 0 • Robotics! Version 1.5

q Insert the 13/32” rubber grommet into
the hole in the center of the Boe-Bot
chassis.

q Insert the two 9/32” rubber grommets

into the two corner holes as shown.

q Use the four 1/4” 4-40 screws to attach
the four standoffs to the chassis as
shown.

Figure 1.4: Topside hardware assembled.

Removing the Servo Horns

Get the two Parallax pre-modified servos
from your parts kit, shown in Figure 1.5.
Each servo has a horn attached to its
output shaft by a Phillips screw.

Parts List

(2) Pre-modified servos

Figure 1.5: Parallax pre-modified servos.

Figure 1.6 shows the dehorned servos.

q Unscrew each of the Phillips screws,

then pull each servo horn upwards and
off of the servo output shaft.

q Save the screws for attaching the Boe-

Bot wheels.

Figure 1.6: Pre-modified servos dehorned.

Horn Phillips
Screw

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 11

Mounting The Servos

Parts List:

Figure 1.7 shows the pre-modified servos and servo
mounting hardware.

(1) Partially assembled Boe-Bot chassis
(2) Servos
(8) 3/8” 4-40 screws
(8) 4-40 locknuts

!

Stop

If you have not already checked
the labeling on your servos, do that
now. Turn to page 1 and follow the
instructions.

Figure 1.7: Servos and mounting hardware.

Assembly:

Figure 1.8 shows the servos mounted on the chassis.

q Use the eight 3/8” 4-40 screws and locknuts to

attach each servo to the Boe-Bot chassis as
shown.

Figure 1.8: Servos mounted on chassis.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 1 21 2 • Robotics! Version 1.5

Assembly

Figure 1.10 shows the Boe-Bot chassis with the battery pack mounted (a) from the underside and (b) from the
topside.

q Use the flathead screws and locknuts to attach the battery pack to underside of the Boe-Bot chassis as

shown in Figure 1.10 (a). Make sure to insert the screws through the battery pack then tighten down the
locknuts on the topside of the chassis.

q Pull the battery pack’s power cord through the hole with the largest rubber grommet in the center of the

chassis.

q Pull the servo lines through the same hole.

q Arrange the servo lines and supply cable as shown in Figure 1.10 (b).

Mounting the Battery Pack

Figure 1.9 shows the battery pack and mounting
hardware to be added next.

Parts List:

(1) Partially assembled Boe-Bot chassis.
(1) Empty battery pack
(2) Flathead 4-40 screws
(2) 4-40 locknuts

Figure 1.9: Battery pack and mounting hardware.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 13

Figure 1.10: (a) Battery pack installed (b) wires pulled through.

Socketing the BASIC Stamp 2.

Figure 1.11 shows the BASIC Stamp 2 to the left
of the Board of Education Rev B.

Parts List:

(1) Basic Stamp 2
(1) Board of Education Rev B.

Figure 1.11: BASIC Stamp 2 and Board of Education Rev B.

FYI

Board of Education is abbreviated BOE, and Rev B stands for revision-B.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 1 41 4 • Robotics! Version 1.5

Figure 1.12 shows the BASIC Stamp 2 mounted in its
socket on the BOE. The BASIC Stamp has a half-circle
printed in the center of its top edge. This is meant to
serve as the reference notch common on many
integrated circuits. When placing the BASIC Stamp in its
socket on the BOE, make sure this half-circle is closest to
the Sout and Vin labels. As a second check, make sure
the largest black chip with the label PIC16C57C is at the
bottom, between the P7 and P8 labels.

q If your BASIC Stamp and BOE were packaged

separately, plug the BASIC Stamp into its socket on
the BOE as shown in Figure 1.12. Make sure the pins
on the BASIC Stamp line up with the holes in the
socket, then press down firmly on the BASIC Stamp
with your thumb. The BASIC Stamp’s pins should
sink into socket holes by about a quarter-inch.

Attaching the Board of Education to the Boe-
Bot Chassis

Figure 1.13 shows the Board of Education, BASIC
Stamp and mounting hardware.

Parts List:

 (1) Partially assembled Boe-Bot (not shown)
 (1) Board of Education with BASIC Stamp 2
 (4) 1/4” 4-40 screws

Figure 1.13: BOE with BASIC Stamp and mounting screws.

Figure 1.12: BASIC Stamp 2 inserted into its socket on
the BOE.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 15

Assembly:

Figure 1.14 shows the Board of education attached
to the Boe-Bot chassis with the servos plugged into
the servo ports.

q Make sure the white breadboard on the Board of

Education is above where the servos are mounted
on the chassis.

q Use the four 1/4” machine screws to attach the

Board of Education to the standoffs.

Figure 1.15 (a) shows a close-up of the servo ports on
the BOE Rev B. The numbers along the top indicate the
servo port number. If you connect a servo to servo port
12, it means the servo’s control line is connected to I/O
line P12. I/O line P12 is a metal trace on the BOE that
connects the top servo port pin to the BASIC Stamp’s I/O
pin P12.

The labels to the right of the servo port are for making sure your servo gets plugged in properly. Figure 1.15
(b) shows a servo plugged into servo port 12 so that the black wire lines up with the “Black” label, and the red
wire lines up with the “Red” label. Although the topmost wire is labeled “White” in Figure 1.15 (b), it could
either be white or yellow.

Rev B

Black
Red

X3
Vdd V s sV in

X4 X5

15 14 13 12

Rev B

Black
Red

X3
Vdd V s sV in

X4 X5

15 14 13 12

Black

Red

White

(a) (b)

Figure 1.15: Servo ports on the BOE Rev B (a) before, and (b) after plugging in servo port 12.

Figure 1.14: BOE attached to chassis.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 1 61 6 • Robotics! Version 1.5

!

Make sure the “Black” and “Red” labels to the right of the servo port line up with
the servo connector’s black and red wires before plugging in a servo.

q Plug the servo that you can see in Figure 1.14 into servo port 12, and plug the other servo into servo port

13.

ü
TIP

The BOE Rev A does not have built-in servo ports. If you can not find the servo
ports shown in Figure 1.15, go to Appendix D: Building Servo Ports on the Rev A
Board of Education.

The Wheels

Figure 1.16 shows the Boe-Bot’s wheel parts and
mounting hardware.

Parts List:

(1) Partially assembled Boe-Bot (not shown)
(1) 1/16” Cotter pin
(2) O-ring tires
(1) 1” Polyethylene ball
(2) Plastic machined wheels
(2) Screws that attached the servo horns, which
were set aside in the Removing the Servo Horns
step.

Figure 1.16: Wheel parts.

Assembly:

Figure 1.17 (a) shows the tail wheel attached to the Boe-Bot chassis with a cotter pin, and Figure 1.17 (b)
shows one of the front wheels attached to a servo’s output shaft.

q The plastic ball is used as the Boe-Bot’s rear or tail wheel, and the cotter pin is its axle. Run the cotter

pin through the holes in the tail of the Boe-Bot chassis so that it holds the one-inch plastic ball in place
as shown in Figure 1.17 (a).

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 17

q Seat each o-ring tire in the groove on the outer edge of each plastic wheel.

q Each plastic wheel has a recess that fits on a servo output shaft. Press each plastic wheel onto a servo

output shaft making sure the shaft lines up with and sinks into the recess.

q Use the machine screws that you saved when you removed the servo horns to attach the wheels to the

servo output shafts.

 (a) (b)

Figure 1.17: (a), Tail wheel mounted on Boe-Bot chassis, and (b), front wheel mounted on servo output shaft.

 Getting Connected

Figure 1.18 shows the parts you’ll need to make your PC communicate with your BASIC Stamp 2.

Parts List:

(4) 1.5 V AA batteries
(1) Serial Cable
(1) Parallax CD

Figure 1.18: parts you’ll need before your first program.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 1 81 8 • Robotics! Version 1.5

Assembly:

Figure 1.19 shows the battery pack before and after the batteries are loaded.

q Load the batteries into the battery pack so that the polarity symbols on each battery match those printed

on the inside of the battery pack.

!

Always use AA 1.5 V batteries.

Do not use 1.2 V (typically
rechargeable) batteries.

If you are considering using an
AC adaptor that you can plug
into the wall to power your Boe-
Bot, see page 2 for details on
which ones are compatible with
your servos.

 Figure 1.19: Battery pack without/with batteries.

Figure 1.20 shows (a), the serial cable connected to a COM port on the back of a PC, and (b) the serial cable
and battery pack connected to the BOE.

q Plug the female end of the serial cable into one of your computer’s unused serial ports.

q Plug the male end of the serial cable into the DB9 socket on the BOE.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 19

Figure 1.20: (a), Serial cable connected to com port, (b) BOE connected to serial cable and battery pack.

q Plug the battery pack back into the BOE while watching the green light on the BOE for problems. Unplug

the battery pack immediately if you see any of the warning signs listed below.

q To extend the life of your batteries, unplug the battery pack’s barrel plug from the BOE’s barrel jack. This

will disconnect power from the Board of Education and the servo motors. You will need to plug the
power back in when you are ready to run your first PBASIC program in Activity #3.

Activity #3: Programming the Boe-Bot’s BASIC Stamp 2 On-Board Computer

The Stamp Editor is the software you’ll be using to program the Boe-Bot’s BASIC Stamp 2 on-board
computer. The Stamp Editor has a feature called the Debug Terminal. You can use the Debug Terminal to
display messages received from the BASIC Stamp and also to send messages to the BASIC Stamp. The Debug
Terminal will be one of your best and most used assistants for circuit testing and troubleshooting.
Programming the BASIC Stamp to communicate with the Debug Terminal is very easy to do using the PBASIC
programming language. We’ll see shortly that the Debug command is very easy to use for displaying messages
from the BASIC Stamp.

!

Warning Signs:

If the green light doesn’t come on, looks unusually dim, or flickers, disconnect the battery pack immediately
and check your wiring. Any of these warning signs could indicate a wiring problem that could be dangerous to
your servo and/or your BASIC Stamp.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 2 02 0 • Robotics! Version 1.5

Software and First Program

This section covers the steps for:

• Installing the Stamp Editor
• Using the Stamp Editor to establish PC – BASIC Stamp communication
• Running a sample PBASIC program that uses the debug command

Note: These instructions are for installing the Stamp Editor from the Parallax CD. A copy of
the Parallax CD can be requested from stampsinclass@parallaxinc.com. You can also get
the latest version of the Stamp Editor (It’s free!) from the from Downloads page of
www.parallaxinc.com.

Software

q If you have not already done so, load the Parallax CD into your computer’s CDROM drive.

The Parallax CD has a browsing program called the Welcome application that runs automatically after the CD
is placed in your computer’s CDROM drive. Figure 1.21 (a) shows the browser as it appears the first time the
CD is placed in the computer’s drive. Figure 1.21 (b) shows the browser as it normally appears when you run
the Welcome application.

Figure 1.21: Welcome application (a) Kits page, and (b) Parallax page.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 21

ü
TIP

If the Welcome application did not run automatically, here’s how to run it manually:
Click the Start button on your Windows taskbar and select Run. When the Run window
appears, enter the CDROM drive letter, followed by a colon, a backslash, and the name
“Welcome.exe.” For example, if the drive letter for your computer’s CDROM drive is D,
type in “D:\Welcome.exe.” Click the OK button, and the Welcome application will run.

q If this is not your first time running the Welcome application, the Parallax page shown in Figure 1.21 (b)

will display instead of the Kits page. Skip the next checklist instruction.

q If this is your first time running the Welcome application, a text document about the Parallax CD will
automatically display. When you’re finished reading the text document, minimize it or drag it out of the
way so that you can see the Kits page. Click the “Back” button on the bottom right of the kits page to get
to the Parallax page.

q Click the Software link.

q Click the + next to the BASIC Stamps folder, then click the + next to the Windows 95/98... folder, then

click the diskette labeled Stamp 2/2e/2SX/2p (Stampw.exe).

q Click the Install button, and select “Yes” when the Confirm window asks you if you want to “Install
selected files to C:\Parallax\Stamp?”

q If additional prompts appear, answer them as directed.

After installing the software, run it by following these steps:

q Click the Start button on your Windows taskbar and select Run.

q Enter “C:\Parallax\Stamp\Stampw.exe”, and click OK.

q If this is your first time running the software, the Edit
Port List similar to Figure 1.22 will appear. If you
know the number of the COM port you’re using and it
doesn’t appear in the list, enter the number in the
Com # field, then click the Add button. If you know
that a certain COM port listed in the Known Ports list
is connected to a modem, click its entry in the list,
then select Delete. Otherwise, just click OK.

Figure 1.22: Edit Port List window.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 2 22 2 • Robotics! Version 1.5

ü
TIP

You can always modify this list later by going to the Preferences window. Just Click
Edit, then select Preferences. Com port settings are under the Editor Operation tab.

The Stamp Editor window, similar to Figure 1.23 (a), will appear next. It will help to know the version number
of the software you are using before you check to see if the Stamp Editor is communicating with the BASIC
Stamp.

q Click the Help menu and select About…

q When the About window appears, make a note of the Version number.

Before attempting to run your first program, it’s important to check and make sure the Stamp Editor can
communicate with the BASIC Stamp.

q Plug the battery pack’s barrel plug back into the barrel jack on the BOE. Verify the green light on the

Board of Education lights up.

q Click the Run menu, and select Identify as shown in Figure 1.23 (b).

Figure 1.23: (a) Stamp Editor, (b) Stamp Editor with Run | Identify selected.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 23

Responses to Run -> Identify

When you click run and select Identify, the Stamp editor tries to find any BASIC Stamps connected to your
PC’s COM ports. If your Stamp Editor is Version 1.1 or lower, follow along in the left column below. If your
Stamp Editor is Version 1.2 or higher, follow along in the right column.

Basic Stamp Editor, Version 1.1 or Lower BASIC Stamp Editor Version 1.2 or Higher
When everything is connected and working properly:

A window appears with the message that reads

• “Information: Found BS2-IC (firmware v1.0.).”

This message means the BASIC Stamp and PC are
communicating. Continue to the next section,
entitled “First Program.”

Some of the other messages that might appear are:

• “Error: Basic Stamp II detected but not
Responding…Check power supply.”

• “Error: BASIC Stamp II not responding…Check

serial cable connection. Check power supply.”

If you get one of these error messages, follow the
suggestions in the error message first. If that
doesn’t fix the problem, or if the error message you
get doesn’t offer any suggestions, go to Appendix B:
PC to Stamp Communication Troubleshooting.

An Identification window appears listing all the
known COM ports and their status. One of the listed
ports should read:

• “...BASIC Stamp 2 v1.0...”

This message means the BASIC Stamp and PC are
communicating. Continue to the next section,
entitled “First Program.”

If the “Device Type” column is blank for every COM
port listed, go to Appendix B: PC to Stamp
Communication Trouble-Shooting.

First Program

Your first program will demonstrate the BASIC Stamp’s ability to communicate with the outside world using
the Debug Terminal. This handy terminal can be used for two-way communication between your PC and the
BASIC Stamp. For now, we’ll focus on programming the BASIC Stamp to send messages to the PC.

' Robotics! v1.5, Program Listing 1.1: Hello world!
' {$Stamp bs2}

debug "hello world"

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 2 42 4 • Robotics! Version 1.5

q Type Program Listing 1.1 into the Stamp Editor as shown in Figure 1.24 (a).

q Click Run and select Run. Debug Terminal #1 should appear in a second window, as shown in Figure 1.24

(b).

Figure 1.24: (a) Stamp Editor (b) Debug Terminal.

How “Hello world!” Works

The apostrophe character was used in two ways in this program. The first line used the apostrophe to include
a comment in the program. A comment is text that the programmer adds to help document the program and
make it more understandable. So the line of code that reads:

' Robotics! v1.5, Program Listing 1.1: Hello world!

is a comment. The special thing about the comment is that you can type just about anything to the right of the
apostrophe. In this case, we typed the name of the book this program is in, the number of the program in the
book and a very brief description.

There is one special directive that has meaning to the Stamp Editor even though it gets placed in a
commented line in your program. It’s called the Stamp Directive, and it tells the Stamp Editor what kind of
BASIC Stamp you are writing programs for. The Stamp Directive is in the second line of the program, and it
reads:

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 25

'{$Stamp bs2}

This special directive tells the Stamp Editor that the program should be downloaded to a BASIC Stamp 2.
There are several different Stamp Directives that are used with the different BASIC Stamps manufactured by
Parallax, Inc. The Boe-Bot always comes with the BASIC Stamp 2, so you will see that every Program Listing in
this workbook uses the Stamp Directive for the Basic Stamp 2.

The third line in the program is the only PBASIC command in the program, the debug command. This
command caused the Debug Terminal window to appear and display the “hello world” message. When a
program containing a debug command is run, the Stamp Editor opens a Debug Terminal. When the BASIC
Stamp executes the command:

debug "hello world"

it sends the “hello world” message to your PC by way of the serial cable. The “hello world” message is a text
string, which is one of several types of output data the BASIC Stamp can be programmed to send using the
debug command.

Your Turn

The best way to get a better feel for what you can do with the debug command is to try the examples in the
BASIC Stamp Manual. When you turn to the debug command section in the BASIC Stamp Manual, you’ll see
lots of program examples. The next few paragraphs are excerpts from the BASIC Stamp Manual, v2.0c with a
couple of debug examples you can try. Note that there are Stamp™ icons next to the section heading that
reads “BASIC Stamp 2, 2e, 2sx, and 2p Formatting”. Each of these icons has a number in it, and the ones with
the “2” inside mean the section/example applies to the BASIC Stamp 2. Make sure that the examples you try
are from sections that apply to the BASIC Stamp 2; otherwise, you might get some confusing error messages.

q Try the debug command examples in this excerpt. Make sure to include the Stamp Directive somewhere

in the Stamp Editor along with the code segment before you click the Run menu and select Run.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 2 62 6 • Robotics! Version 1.5

q Look up the debug command in the BASIC Stamp Manual’s table of contents, and continue through the

debug command examples in the BASIC Stamp Manual’s debug command section. Remember to only try
examples in sections that discuss the BASIC Stamp 2. Remember also to add the Stamp Directive:
' {$Stamp bs2}.

Activity #4: Testing the Servos Individually

In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified
servos on the Boe-Bot.

How Servos Work

Normal (un-modified) hobby servos are very popular for controlling the steering systems in radio-controlled
cars, boats, and planes. These servos are designed to control the position of something such as a steering flap
on a radio-controlled airplane. Their range of motion is typically 90° or 180°, and they are great for
applications where inexpensive, accurate high-torque positioning motion is required. The position of these
servos is controlled by an electronic signal called a pulse train, which you’ll get some first hand experience
with shortly. An un-modified hobby servo has built-in mechanical stoppers to prevent it from turning beyond
its 90° or 180° range of motion. It also has internal mechanical linkages for position feedback so that the
electronic circuit that controls the DC motor inside the servo knows where to turn to in response to a pulse
train.

FYI

For experiments with unmodified servos, try What’s A Microcontroller? Experiments 3
and 4, available for free download from the www.stampsinclass.com -> Downloads ->
Educational Curriculum page. You will need an unmodified hobby servo and a few
additional parts for these experiments.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 27

A Parallax pre-modified servo does not have the position
feedback and mechanical stoppers you find in normal
hobby servos. You can send the same electronic signals
(a pulse train) to a Parallax pre-modified servo as you
would normally send to a hobby servo. In a hobby servo,
a given pulse train makes it turn to a certain position and
stay there. The same pulse train causes a Parallax pre-
modified servo to turn continuously. The pulse train also
sets the pre-modified servo’s speed and direction. So,
instead of controlling airplane flaps, the Parallax pre-
modified servos are used as BASIC Stamp controlled
motors that make the Boe-Bot’s wheels turn.

Figure 1.25 shows the circuit that is established when a servo is plugged into the servo port labeled 12 on the
BOE Rev B’s top right corner. The red and black wires connect to the servo’s power source, and the white (or
sometimes yellow) wire is connected to a signal source. When a servo is plugged into servo port 12, the
servo’s signal source is BASIC Stamp I/O pin P12.

About Time Measurements and Voltage levels

Throughout this student workbook, amounts of time will be
referred to in units of seconds (s), milliseconds (ms), and
microseconds (µs). Seconds are abbreviated with the lower-case
letter s. So, one second is written as 1 s. Milliseconds are
abbreviated as ms, and it means one one-thousandth of a
second. One microsecond is one one-millionth of a second. The
Milliseconds and Microseconds box to the right shows these
equalities in terms of both fractions and scientific notation.

A voltage level is measured in volts, which is abbreviated with an
upper case V. The BOE has sockets labeled Vss, Vdd, and Vin. Vss
is called the system ground or reference voltage. When the
battery pack is plugged in, Vss is connected to its negative
terminal. As far as the BOE, BASIC Stamp and serial connections
to the computer are concerned, Vss is always 0 V. Vin is
unregulated 6 V, and it’s connected to the positive terminal of the
battery pack. Vdd is regulated to 5 V by the BOE’s onboard
voltage regulator, and it will be used with Vss to supply power to
circuits built on the BOE’s breadboard.

Red

Black
Servo

White

Vin

Vss

P12

Figure 1.25: Servo connection schematic.

Milliseconds and
Microseconds

s3-101s
1000

1
ms1 ×==

s6-101s
1,000,000

1
s1 ×==µ

Voltages and BOE
Labels

(ground)V0Vss =

)(regulatedV5Vdd =
ed)(unregulatV6Vin =

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 2 82 8 • Robotics! Version 1.5

!

Only use the Vdd sockets above the BOE’s breadboard for the Activities in this
workbook. Do not use the Vdd on the 20-pin app-mod header.

The control signal the BASIC Stamp sends to the servo’s control line is called a “pulse train,” and an example
of one is shown in Figure 1.26. The BASIC Stamp can be programmed to produce this waveform using any of
its I/O pins. In this activity, we’ll start with I/O pin P12, which is already connected to servo port 12 by a metal
trace built into the Board of Education. First, the BASIC Stamp sets the voltage at P12 to 0 V (low) for 20 ms.
Then, it sets the voltage at P12 to 5 V (high) for 1.0 ms. Then, it starts over with a low output for another 20
ms, and a high output for another 1.0 ms, and so on.

Vdd (5 V)

Vss (0 V)

1.0 ms 1.0 ms

20 ms

Figure 1.26: Pulse train.

This pulse train has a 1.0 ms high time and a 20 ms low time. The high time is the main ingredient for
controlling a servo’s motion, and it is most commonly referred to as the pulse width. In this example, we are
working with 1 ms wide pulses. Since these pulses go from low to high (0 V to 5 V) for a certain amount of
time, they are called positive pulses. Negative pulses would involve a resting state that’s high with pulses that
drop low. Pulse trains have some other technical descriptions such as duty and duty cycle. These are
described in BASIC Analog and Digital, Experiment #6.

Remember

Pulse width is what controls the servo’s motion. The low time between pulses
can range between 10 and 40 ms without adversely affecting the servo’s
performance.

A pre-modified servo can be pulsed to make its output shaft turn continuously. The pulse widths for pre-
modified servos range between 1.0 and 2.0 ms for full speed clockwise and counterclockwise respectively. If
you give a pre-modified servo 1.25 ms pulses, it will turn clockwise at roughly half of full speed. If you give a
pre-modified servo 1.90 ms pulses, the servo will turn at almost full speed counterclockwise. The “center

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 29

pulse width” is 1.5 ms, and that makes the servo stay still. If the servo turns very slowly in response to 1.5 ms
pulses, you will learn how to adjust the servo to stay still using a PBASIC program in Activity #6.

Figure 1.27 shows the Boe-Bot’s front, back, left and right. Use this diagram as your guide when you see
instructions about making the Boe-Bot move forward/backward, examining the right or left wheels, etc.

 Front

Forward

Backward

Left

Right

 Back

Figure 1.27: Boe-Bot from the driver’s seat.

Let’s start by programming the Boe-Bot’s right wheel to turn full speed ahead. For the right side of the Boe-
Bot, this means the wheel has to turn clockwise, which means it needs to receive 1 ms pulses every 20 ms or
so.

q You may want to set the Boe-Bot on something to keep it’s wheels from touching the ground during these

tests. Otherwise, you will see the Boe-Bot spin around in circles since only one wheel is turning.

q Enter Program Listing 1.2 into the Stamp Editor.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 3 03 0 • Robotics! Version 1.5

' Robotics! v1.5, Program Listing 1.2: Right Wheel Full Speed Ahead.
' {$Stamp bs2} ' Stamp Directive.

low 12 ' Set P12 to output-low.

loop: ' Target label for last command - “goto loop”.

 pulsout 12, 500 ' Send 1.0 ms pulses to P12
 pause 20 ' every 20 ms.

goto loop ' Send program to “loop:” label.

q Save the program using a descriptive name, such as “Boe-Bot 1.2”. You can do this by clicking the File

Manu and selecting Save (or Save As... if you are renaming the file). Then enter the “Boe-Bot 1.2” into the
File name: field, and make sure that the Save as type: field is set to “BASIC Stamp 2 files (*.bs2)”.

q Run the program by clicking Run and selecting Run.

q Verify that, as you’re looking at the wheel from the Boe-Bot’s right side that it is turning clockwise fairly

rapidly (about 37 RPM).

How the Right Wheel Full Speed Ahead Program Works

q Look up each of the following new commands in Appendix C: PBASIC Quick Reference or in the BASIC

Stamp Manual before continuing: low, pulsout, pause, goto.

As with the previous program example, the first line of the program is a descriptive comment and the Stamp
Directive is on the second line. In this program there are also comments (that begin with apostrophes) to the
right of each PBASIC command. With the exception of the Stamp Directive, when entering the commands into
the Stamp Editor, you don’t need to include the comments. Aside from the Stamp Directive, comments and
other ways of documenting your programs become important later on if you start writing code that’s more
complex or that somebody else needs to work with. For the time being, just enter the commands (and the
Stamp Directive) into the Stamp Editor unless otherwise directed by your instructor.

The command low 12 does two things. It sets BASIC Stamp I/O pin P12 to output, then it sets its output
value low. As an output, P12 can send voltage signals, as opposed to being set to input, which means P12
would listen for signals instead. Setting the output value low means that the voltage P12 sends is the same as
Vss, 0 volts. If the command high 12 were used instead, P12 would send a high signal, which would be Vdd,
5 volts.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 31

When a word that’s not a PBASIC command is followed by a colon, it’s a called a “label”. As you get more and
more familiar with PBASIC, you’ll start to recognize which words are commands and which words are labels
automatically. The loop: label works together with the command goto loop at the end of the program.
The loop: label is a place holder, and whenever the program gets to the command goto loop, it causes
the program to start executing commands at the loop: label again. The result is that the pulsout and
pause commands get executed over and over, which causes a continuous pulse train to be sent to the servo.

The loop:...goto loop program structure is called an infinite loop. An infinite loop means that part of
the code in the program is executed over and over again with no code that allows it to stop repeating the
same set of instructions. Often with normal computer programs, this is a problem. However, infinite loops
are commonly used in microcontroller programming. In fact, most microcontroller programs, including the
ones in this text, are written within the framework of an infinite loop. With the BASIC Stamp, you can always
end an infinite loop by disconnecting the power or using the Stamp Editor to run a different program.

The command pulsout 12, 500 sends a 1.0 ms pulse to P12. The pulsout command has two arguments,
pin and period. The pin argument refers to the I/O pin the BASIC Stamp sends the voltage pulse to, and
period refers to how long the voltage pulse lasts. The I/O pin number makes sense; the number 12 refers to
I/O pin P12. What about the period argument of 500? How does that correspond to a 1.0 ms pulse? The
answer is that the period argument for the pulsout command has to be specified in 2 µs increments. So,
if you want the pulse to last for 1.0 ms, you have to use a number that gives you 1.0 ms when it’s multiplied by
2 µs increments. Here is proof that a pulsout period of 500 fits the bill.

ms.

s.

s

)s(ìs

01
1001

101000

1025002500

3

6

6

=
×=

×=

××=×

−

−

−

The command pause 20 is much more obvious. That’s because the period argument for the pause
command is specified in 1 ms increments. So, if you want a 20 ms pause, pause 20 does the job.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 3 23 2 • Robotics! Version 1.5

Your Turn

Program Listing 1.3 is really Program Listing 1.2 with one small change. Instead of pulsout 12, 500,
Program Listing 1.3 uses the command pulsout 12, 1000. This should make the right wheel turn full speed
counterclockwise.

q Run Program Listing 1.3 as shown.

' Robotics! v1.5, Program Listing 1.3: Right Wheel Full Speed Reverse.
' {$Stamp bs2} ' Stamp Directive.

low 12 ' Set P12 to output-low.

loop: ' Label for "goto loop to return to"

 pulsout 12, 1000 ' Send 2.0 ms pulses to P12
 pause 20 ' every 20 ms.

goto loop ' Send program to "loop: " label.

q To make the right wheel stay still, modify the pulsout command so that it reads pulsout 12, 750,

and run the modified program.

Program Listing 1.4 is Program Listing 1.3 with two small changes:

• low 12 was changed to low 13
• pulsout 12, 1000 was changed to pulsout 13, 1000

q Run Program Listing 1.4 as shown to make the left wheel turn full speed counterclockwise.

' Robotics! v1.5, Program Listing 1.4: Left Wheel Full Speed Ahead.
' {$Stamp bs2} ' Stamp Directive.

low 13 ' Set P12 to output-low.

loop: ' Label for "goto loop to return to"

 pulsout 13, 1000 ' Send 2.0 ms pulses to P13
 pause 20 ' every 20 ms.

goto loop ' Send program to "loop: " label.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 33

q To make the left wheel turn full speed clockwise, modify the command pulsout 13, 1000 so that it
reads pulsout 13, 500, and run the modified program.

q Now, change the period argument of the pulsout command from 500 to 750, and the wheel should

stay still.

Activity #5: Running Both Servos

When you assembled the Boe-Bot in Activity #2, you plugged the servo on the right side of the Boe-Bot into
P12 and the servo on the left side of the Boe-Bot into P13. Figure 1.28 shows a schematic of the circuit you
created by doing this. The servo on the Boe-Bot’s right side is connected to I/O line P12 and the servo on the
Boe-Bot’s left is connected to P13. Each servo is also connected to Vin (the battery pack’s positive terminal)
and Vss (the battery pack’s negative terminal).

The easy part about making the Boe-Bot roll forward
is that you include two pulsout commands, one for
each servo. The difficult part can be figuring out
what the period arguments should be.

Take a look at the right side of the Boe-Bot. To make
this wheel turn forward, the servo has to turn
clockwise. This means a period argument less than
center. A period of 500 will work well for full speed
ahead. Now look at the left side of the Boe-Bot. To
make this wheel turn forward, the servo has to turn
counterclockwise. Now instead of 500, a period of
1000 is needed.

q Enter and run Program Listing 1.5 and observe

the results.

If the Boe-Bot rolled backward instead of forward,
the servo lines were swapped. It means that the
servo plugged into servo port 12 should be plugged
into servo port 13 and visa-versa.

Red

Black
Servo

White

Vin

Vss

P12

Red

Black
Servo

White

Vin

Vss

P13

Figure 1.28: Servo connection schematic.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 3 43 4 • Robotics! Version 1.5

' Robotics! v1.5, Program Listing 1.5: Full Speed Ahead – both servos.
' {$Stamp bs2} ' Stamp Directive.

low 12 ' Set P12 to output-low.
low 13 ' Set P13 to output-low.

loop: ' Label for "goto loop to return to"

 pulsout 12, 500 ' Send 1.0 ms pulses to P12
 pulsout 13, 1000 ' Send 2.0 ms pulses to P13
 pause 20 ' every 20 ms.

goto loop ' Send program to "loop: " label.

How Program Listing 1.6 Pulses Both Servos

Program Listing 1.6 pulses the left servo, then the right servo, then pauses. It does this in an infinite loop, so
the Boe-Bot just keeps going. Among other things, in Chapter 2, we’ll work on setting the distance traveled.

Your Turn

q After you make each change listed below, make sure to run the modified version of the program and

observe what the Boe-Bot does differently.

q Swap the pulsout period arguments to make the Boe-Bot to roll backward. In other words, instead of

using the commands pulsout, 12, 500 and pulsout 13, 1000, use the commands pulsout 12,
1000, and pulsout 13, 500. This should make the Boe-Bot travel backward instead of forward.

q Try setting both pulsout period arguments to the center value of 750 to make the Boe-Bot stay still.

q Try setting both pulsout period arguments to 500 and run the modified program. It will make the Boe-

Bot rotate counterclockwise in place.

q Try setting both pulsout period arguments to 1000 and run the modified program. It will make the

Boe-Bot rotate clockwise in place.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 35

Activity #6: Tuning the Servos – Calibration in Software

Chances are that you noticed your Boe-Bot didn’t go perfectly straight forward when you ran Program Listing
1.5. For that matter, it probably didn’t go perfectly straight backward in response to the modifications you
made to Program Listing 1.5 in the Your Turn section of Activity #5. You can adjust a pulsout command’s
period argument to straighten out the Boe-Bot’s travel. This practice is called “calibration in software”.

If the Boe-Bot veers to the right when it is programmed to go straight forward, either the left wheel needs to
slow down, or the right wheel needs to speed up. Since the servos are pretty close to top speed as it is,
slowing the left wheel down will work better. You can do this by making the pulse period to the left servo,
which is connected to P13, smaller. For example, instead of using the command pulsout 13, 1000, you
might try pulsout 13, 940. Keep in mind that the adjustment is different if you need to slow the right
wheel’s rotation. In that case, use a pulsout period argument larger than 500, such as 560 for starters. By
trying different values, you can home in on the value that will get your Boe-Bot wheels turning forward at the
same speed, then your Boe-Bot will move forward in a straight line.

q The paragraph that comes just before this checkbox instruction describes how to modify Program Listing

1.5 to make the Boe-Bot travel forward in a straight line. Test your Boe-Bot and try these modifications.
Keep in mind that you may have to try many different pulsout period values to fine tune the Boe-Bot’s
motion.

You can also make the same corrections to get the Boe-Bot travel in a straight line backward. You will first
need to modify Program Listing 1.5 to make the Boe-Bot travel full speed backward. Then, test to figure out
which wheel needs to slow down. Since the pulsout period values have to be swapped to make the Boe-
Bot travel full speed reverse, you will also need to adjust the pulsout period argument differently. For a
given wheel, slowing it down involves taking the full speed pulsout period argument, and adjusting it so
that it is slightly closer to the center pulsout period of 750.

q Make the necessary changes in Program Listing 1.5 so that it makes the Boe-Bot go full speed backward.

q Make the additional adjustments to one of the two pulsout commands to slow down the wheel that’s

turning too fast to cause the Boe-Bot to travel backwards in a straight line.

IMPORTANT: You can re-use the pulsout period values you just determined in later activities. There will be
many example programs in this workbook where the values of 1000 and 500 are used for full speed ahead and
full speed reverse. You can substitute your “calibration in software” values for better results when you try the
rest of the example program listings in this workbook.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 3 63 6 • Robotics! Version 1.5

q Make notes of the fine-tuned pulsout period values you came up with for full speed straight forward
and full speed straight backward.

You can skip the rest of this activity if your servos remained still when you modified Program Listings 1.3 and
1.4 to send pulse widths of 1.5 ms. This calibration involves testing each servo at pulse periods around the
predicted center pulsout period value of 750 (1.5 ms). What you’ll be looking for is the best period value
to really make the servo stay still.

q First, run Program Listing 1.6. If the servos don’t move, they are calibrated. If the servos rotate slowly,

follow the instructions below. If the servos turn rapidly, check your program for clerical errors.

' Robotics! v1.5, Program Listing 1.6: Stay still (centered) – both servos.
' {$Stamp bs2} ' Stamp Directive.

low 12 ' Set P12 to output-low.
low 13 ' Set P13 to output-low.

loop: ' Label for "goto loop to return to"

 pulsout 12, 750 ' Send 1.5 ms pulses to P12
 pulsout 13, 750 ' Send 1.5 ms pulses to P13
 pause 20 ' every 20 ms.

goto loop ' Send program to "loop: " label.

By viewing the slowly turning Boe-Bot wheel from the side, you can decide whether to search for the true
center pulsout period using values above or below 750.

• If the wheel is turning clockwise, that means that its true center pulsout period is
somewhere above 750.

• If the wheel is turning counterclockwise, it means the true center pulsout period is
somewhere below 750.

The test for finding the correct center pulse width for each servo involves finding the range of values that
make the servo stay still. If the servo is turning slowly clockwise, try pulsout period values of 751, 752,
753,... To figure out where the true center is, you will need to keep on increasing the pulsout period
argument. Make a note of the first value that causes the servo to stay still. Then, keep increasing the
pulsout period until the servo starts turning the opposite direction. Make a note of that value as well.
Keep in mind that this process works almost the same for a servo that is turning counterclockwise, simply
look for the true center pulse width somewhere below 750. Your search will begin at 749, then continue
downwards until the servo stops turning, then starts turning the opposite direction.

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 37

After finding the upper and lower pulsout period values that make your servo stay still, you can take the
average of those two values to calculate the true center pulsout period argument. This calculated value is
the one you should use in place of 750 in Program Listings.

q For each servo that does not stay still when you run Program Listing 1.6, perform the procedure just

described for finding the pulsout period value that makes the servo stop turning, and the value that
makes the servo start turning again in the opposite direction.

The true value of the period argument to center the servo is somewhere between when the servo stops and
when the servo starts again. For example, if the servo stops turning at 753 and starts turning again at 755, it’s
easy. Just take 754 as the center period for that servo.

Here’s an example that’s a little more difficult. What if the servo doesn’t stop turning until it gets a period
argument of 752? Then, what if it doesn’t start turning again until it gets a period argument of 757? The
true period to center this modified servo is would be somewhere between 752 and 757, but where? By
taking the average of the two numbers, the period would be:

754.5
2

757752
periodpulsoutaverage =

+
=

The pulsout command’s period argument can only be specified by an integer value between 0 and 65535.
Some examples of valid period arguments are: 0, 1, 2,...,754, 755,.… So, 754.5 can not be used as a valid
period argument. The average pulsout period needs to be rounded, but which way? Although the
standard practice is to round up if the decimal value is 0.5 or above, the servo might not really behave
according to that practice. You could experimentally determine which way to round by trying periods of 758
and 751 in your program. Continuing the example, if 751 makes the servo to turn faster, round upward, and
take 755 as the center period. On the other hand, if 758 makes the servo turn faster, round downward, and
take 754 as the center period.

q Use the calculations just described to figure the true center pulsout period argument for each servo

that did not stay still when you ran Program Listing 1.6.

FYI

If all attempts to calibrate your servo in software fail, you can download
instructions for how to disassemble and adjust it from the www.stampsinclass.com
-> Robotics! page.

q Add the pulsout period arguments for the center period values to your notes on the period values

for the straight forward and backward values you’ve already gathered.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 3 83 8 • Robotics! Version 1.5

Congratulations on the construction and operation of your Boe-Bot!
Through following the procedures in this chapter, you may have had
your first taste of testing and troubleshooting at the system and
subsystem levels. Lots of other essential topics were covered that will
get used and re-used throughout this text. For example, the Debug
Terminal will be your best and most used tool for testing and
troubleshooting each circuit as well as many upcoming programs.

The PBASIC programming language was introduced along with some example programs to get you started
with the Debug Terminal and with the Boe-Bot. Comments and labels were introduced, as were the
commands low, pulsout, pause, and goto. Software calibration also was introduced.

Real World Example

From the space shuttle all the way down to the Boe-Bot, isolating and testing subsystems during each phase
of development is critical to make sure the whole thing runs when it’s put together. More importantly,
isolating and testing each subsystem minimizes the time spent on, and difficulty level of, troubleshooting. At
the beginning of the chapter, the problems associated with not iteratively developing and testing were
discussed. Imagine if nobody tested the Space Shuttle’s subsystems before putting it together. It would take
hundreds of years for NASA to get all their problems sorted out!

Whether it’s robotics competitions, product development, or space programs, subsystem and system level
development and testing is the way to avoid unnecessary delays when working from the beginning to the end
of a project. Especially in product development, groups of engineers develop systems and subsystems. Often,
it’s not until late in the design cycle that the system level testing and system integration occurs. Sometimes,
all a design team knows are the input and output (I/O) requirements of their particular module in the project.
Regardless, engineering design teams still have to iteratively develop, simulate (which we did not do here), and
test the subsystems within the project module they are working on.

Software calibration also was introduced. This is currently a hot topic because many appliance makers are
working on incorporating microcontrollers that can communicate across the Internet into their products.
Remote diagnostic programs can then enhance the ability of the microcontrolled devices to self calibrate.
Also, technicians can perform software calibration, diagnosis, and in some cases repair, all remotely. Imagine
your TV picture going bad a few years from now. Getting it fixed might involve the pressing of a few buttons
on your TV remote. Then the microcontroller in your TV will log onto the Internet and report the problem to
the company that makes the TV. Before sending out a TV repair person, your TV’s problem will be diagnosed,
perhaps by a computer program. It might even be fixed by the program sending special control instructions
back to the microcontroller. Otherwise the TV repair person will show up with the right parts to fix it.

Summary and
Applications

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 39

Boe-Bot Application

One item you’ll investigate in the Questions and Projects section is what happens when the wiring of the
servos gets changed. How does this get handled? It involves more changes than you might think. For
example, if you were to unplug a servo from servo port 12 and then plug it into servo port 15, you can’t just
change the drawing that shows what port to plug it into. The schematic, which is the preferred method of
communicating wiring information, has to be changed, but so do all the program listings. At some point you
might want to add more servos to function as grippers. Although a gripper design is not included in this text,
Questions and Projects has exercises that will prepare you for connecting servos to different ports.

So far, the Boe-Bot can be programmed to roll forward or backward or to rotate in place. During some of
your testing, small variations in servo performance were discovered and corrected in software. The
advantage of calibration in software is that, instead of mechanically adjusting the Boe-Bot, the PBASIC
program is modified to make the correction. This software calibration was all done at only two or three
speeds: full speed ahead, full speed reverse, and full stop. In the projects section you’ll get a chance to
further research and generalize the software calibration for a variety of speeds.

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 4 04 0 • Robotics! Version 1.5

Questions and Projects

Questions

1. Explain the two things the debug command does.

2. What are the different types of output data that can be used with the debug command? Hint: Use
the BASIC Stamp Manual to answer this question.

3. Assuming the circuit inside the servo that controls the DC motor updates what it’s doing every 20 ms,

how many times per second does the DC motor get updated? Hint: This is a division problem.

4. Discuss how you would modify Figure 1.25 and Program Listing 1.2 if you wanted to test each of your
servos using I/O line P15. How would it change Figure 1.15 (b)?

5. Assume in Activity #5 that you want to use I/O lines P14 and P15 to drive both servos. Make sketches

of your recommended modifications to the relevant diagrams, pictures, and code samples in this
activity to accommodate this change.

6. What would you do if you wanted to drive the servos using I/O lines P10 and P11. Repeat the

activities in Question 5. Hint: One of the Appendix sections in the back of the book will be useful.

Exercises

1. What would happen if you used pause 30 instead of pause 20 in the Chapter #1 program

listings? How would this effect the servos’ operation? Draw a diagram similar to Figure 1.26 based
on a pulse train using pause 30 and pulsout 12, 1000.

2. The How the Right Wheel Full Speed Ahead Program Works section in Activity #4 has a math example

that shows how the pulsout period argument 100 equates to 1.0 ms pulses. Repeat this exercise
for pulsout 12, 750 and pulsout 12, 1000.

3. What is the necessary pulsout period argument to make a 1.626 ms pulse?

Chapter #1: Assembling and Testing Your Boe-Bot

Robotics! Version 1.5 • P a g e P a g e 41

4. What are the maximum and minimum pulse widths that can be generated using the pulsout
command?

5. Challenge: Since the low time in the pulse train is not overly important, the pause period was not

adjusted when a second pulsout command was added. However, each pulsout command
causes an additional delay on top of the 20 ms pause. How would you adjust the pause period in
Program Listing 1.5 to ensure that the pulse to a given servo begins every 20 ms?

Projects

1. In Question 5, you modified the relevant figures and programs in Activity #5 so that you could use I/O
lines P14 and P15 to drive the servos instead of I/O lines P12 and P13. Use your Boe-Bot to test
these modifications. Make sure to save your programs under different file names, because, in the
next chapter, we’ll start over again with I/O lines 12 and 13.

Record the Boe-Bot’s behavior on the first run of your test. Was this the expected behavior? If not,
account for it, then record the additional changes you had to make to get your Boe-Bot working as
intended. There may be multiple iterations of troubleshooting here; make sure to record each step
taken to get the Boe-Bot to function as intended.

2. Program the Boe-Bot to move in several different patterns. Try the following:

(a) Identify a pair of pulsout values that make the Boe-Bot move slowly straight forward. Shoot

for wheel speeds of 4 revolutions per minute (RPM). Some trial and error will be necessary to
find the pulsout period value to make each servo turn at this rate.

(b) Identify a pair of pulsout period values that make the Boe-Bot move very slowly straight
backward at the same speed. How do these values compare (or not compare) to those identified
in 2 (a.)?

3. Make a graph of wheel speed as a function of pulse width for each servo. Use several pulse widths

between 0.8 and 2.2 ms (pulsout values between 400 and 1100). Either count how many
revolutions the wheel completes in a specified time (20 seconds or a minute), or see how much time
it takes to complete 10 revolutions.

Your graph might look similar to Figure 1.29. This graph was generated by a Microsoft Excel
spreadsheet using eight data points and the “Best Fit” option. Collect data points and make your own
graphs, one for each servo. In general, when you plot more data points, you can expect your graph to
be more reliable. However, there are lots of techniques for reducing the number of measurements.
One example would be to take a few measurements to find the curved areas of the graph, then focus

Chapter #1: Assembling and Testing Your Boe-Bot

P a g e P a g e 4 24 2 • Robotics! Version 1.5

on taking many measurement in those areas while taking only a few measurements in the areas that
are linear.

Note: Expect your graphs to look different from Figure 1.29 because it’s for a different kind of servo
from the one in your kit.

Use your graphs to predict the pulse widths required to make your Boe-Bot go straight forward or
straight backward with less trial and error. Try this at a variety of speeds. The rotational speed of
one servo will correspond with a certain pulsout value. Remember that the values you select will
come from opposite sides of the 750 center pulsout period.

Servo #1

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

400 500 600 700 800 900 1000 1100

Pulsout Period (2-microsecond increments)

R
o

ta
ti

o
n

al
 S

p
ee

d
 (

R
P

M
)

Figure 1.29: pulsout period vs. rotational speed for servo.

Test the accuracy of the graphically determined predictions by programming them into your Boe-Bot
and testing to see how straight it goes. By focusing on one servo for your corrections, you can
calculate the percent error of your initial guess. So that error from the other servo is not a factor,
fine tune it using trial and error so that it rotates at the exact speed predicted by your graphs. Then,
you can figure the percent error on the servo that you have not fine tuned using this equation:

100%
durationexact

durationpredicteddurationexact
error% ×

−
=

The exact period is what you will arrive at by adjusting a single servo using trial and error. The
predicted period is the value from the graph for that servo. You can expect percent errors of
between 5 and 25% depending on the resolution of your graph and other factors such as
imperfections in wheel alignment and slight differences in wheel size.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 43

Chapter #2: Boe-Bot Navigation under Program Control

Chapter #2 is all about instructing the Boe-Bot where to go and
how to get there. You’ll write programs to make the Boe-Bot
perform a variety of maneuvers. Some programs can be used for
navigating tight spaces, others for drawing shapes. Whatever the
maneuver, this chapter presents the tools for programming the
Boe-Bot to perform it. Here’s what you’ll learn how to do in
Chapter #2:

• Build a low battery indicator.
• Program your Boe-Bot to go a variety of directions, all in the same program.
• Write programs that fine tune the Boe-Bot’s maneuvering skills.
• Write programs that remember long lists of movement instructions.
• Write programs that make the Boe-Bot accelerate and decelerate during maneuvers.

Along the way, Chapter #2 introduces a variety of PBASIC programming techniques, such as for...next
loops and if...then statements. The exercises in this chapter also offer lots of practice in using variables
and flow control to accomplish a variety of tasks. Some essential math for converting program commands
into distance and speed are also introduced. For some, this will be a first glimpse into elementary Dynamics.

Converting Instructions to Motion

In the previous chapter, you programmed the Boe-Bot to move forward, backward, and turn in place.
Additionally, software calibration settings were determined for programming the Boe-Bot to move straight
forward, straight backward, and to stop and stay still.

Each Boe-Bot navigation program in Chapter #1, Activity #6 focused on one direction. If the Boe-Bot was
programmed to go forward, it had to be reprogrammed to go backward and reprogrammed again to turn in
place. In this chapter, all the directions will be incorporated into a single program. By determining how many
pulses it takes to make the Boe-Bot rotate a certain amount during a turn, you can program the Boe-Bot to
perform a variety of more precise maneuvers. For example, the Boe-Bot can be programmed to draw a
square, or a cross, or a triangle.

This level of programmed maneuverability is well and good, but programming long and involved lists can
become a complicated problem. PBASIC also features a simple and efficient method of recording and
accessing long lists of directions in the program memory. You’ll notice that while the Boe-Bot is performing
its programmed maneuvers that it comes to abrupt stops when it changes direction. Commands can also be

Chapter #2:
Programming the
Boe-Bot to Go
Places

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 4 44 4 • Robotics! Version 1.5

added to make the Boe-Bot decelerate into and accelerate out of direction changes. This will solve the
abrupt stops and extend the life of the Boe-Bot’s servos.

The Boe-Bot’s behavior when the batteries go low can be mystifying. Low batteries are also not good for the
servos or the BASIC Stamp. The first activity will guide you through the construction and testing of a low
battery indicator.

Activity #1: Low Battery Indicator

When the voltage supply drops below the level a device needs to function properly, it’s called brownout. The
BASIC Stamp protects itself from brownouts by making its processor and program memory chips go dormant
until the power supply voltage returns to normal levels. A drop below 5.2 V at Vin results in a drop below 4.3
V at the BASIC Stamp’s internal voltage regulator output. A circuit called a brownout detector on the BASIC
Stamp waits for this condition. When the voltage comes back, the BASIC Stamp has been “reset.” In response
to a reset, the BASIC Stamp behaves essentially the same as if you had unplugged the power and then plugged
it back in. In either case, what happens is that the program the BASIC Stamp was running before the reset
starts over again at its beginning.

One way to indicate resets is to include an unmistakable signal at the beginning of all the Boe-Bot’s programs.
The signal then occurs every time the power gets plugged in, but it also occurs every time a reset due to
brownout conditions occurs. The most effective signal for this is a speaker that emits a tone each time the
BASIC Stamp program runs from the beginning or resets. The schematic symbol and top view of the
piezoelectric speaker is used for emitting the tones in this activity are shown in Figure 2.1.

Parts List

(1) Assembled and tested Boe-Bot
(1) Piezospeaker
(misc.) Wires

Piezo

1

2

1

2

 Figure 2.1: Piezo

Build It!

Figure 2.2 shows the piezospeaker and servo schematics along with a wiring diagram.

q Build the circuit as shown in Figure 2.2 (b).

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 45

P2

Vss

Piezo

Red

Black
Servo

White

Vdd

Vss

P12

Red

Black
Servo

White

Vdd

Vss

P13

X3
Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Rev B

Red

X4 X5

15 14 13 12

Black

To
Servos

Figure 2.2 (a) Schematic (b) Wiring diagram

ü
TIPS

New to building circuits from schematics? Check out Appendix F: Breadboarding
Rules.

The instructions in all activities from this point forward will assume your servos
are plugged in as shown in Figure 2.2 (a) and (b).

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 4 64 6 • Robotics! Version 1.5

In Chapter 1, the millisecond and microsecond
quantities were introduced. In this chapter, the hertz
and kilohertz quantities are introduced. One hertz is
simply one time-per-second, and it’s abbreviated 1
Hz. One kilohertz is one-thousand-times-per-
second, and it’s abbreviated 1 kHz.

Programming the Low Battery Indicator

At the beginning of the program, a command that makes the speaker sound a tone will send the low battery
signal. Then, the program listing should stay busy with an infinite loop until a reset occurs. If the circuit is
correctly wired and the program is working, the tone should sound every time the power is unplugged then
plugged back in. It should also sound every time the reset button is pressed. This guarantees that the tone
will sound when a reset occurs due to low batteries.

q Connect the battery pack’s barrel plug into the BOE’s barrel jack.

q Connect the computer’s serial cable to the BOE’s DB9 connector.

q Enter Program Listing 2.1 into the Stamp Editor

q Run it by clicking Run then selecting Run.

q This program makes use of the Debug Terminal, so leave the serial cable connected to the BOE while

Program Listing 2.1 is running.

' Robotics! v1.5, Program Listing 2.1, The Battery Indicator.
' {$Stamp bs2} ' Stamp Directive.

debug cls, "Beep!!!" ' Display while speaker beeps.
output 2
freqout 2, 2000, 3000 ' Send a 3 kHz signal for 2 s.

loop: ' Loop label.
 debug "Waiting for reset…", cr ' Display while the BS2 is waiting.
goto loop: ' Go to the loop label (infinite loop).

q Verify that the low battery indicator works by pressing and releasing the reset button on the BOE.

Hz and kHz

11
s
1

H1 −== sz

1-s 1000
s

1000
1 ==kHz

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 47

Just as when the program first ran, the speaker should play a high pitched tone for 2 s. At the same time, the
Debug Terminal should display the “Beep!!!” message. Then, all should go silent while the Debug Terminal
displays line after line of the “Waiting for reset…” message.

q If the speaker did not play a tone, check your wiring and code, then try running the program again.

Debug display problems are typically caused by typing mistakes.

q If the Debug display does not behave as expected, check your program and make sure the code matches

the example code shown in Program Listing 2.1 above.

How the Low Battery Indicator Program Works

q Use Appendix B or the BASIC Stamp Manual to look up the freqout and output commands

introduced in program listing 2.1.

Program listing 2.1 starts by displaying the message “Beep!!!” Then, immediately after printing the message,
the freqout command plays a 3 kHz tone on the piezoelectric speaker for 2 s. Playing the tone actually
takes two steps. First, P2 must be set to output using the output 2 command. The audible tone is then
played when the freqout 2, 2000, 3000 command is executed. It sends pulses out P2 that make the
piezoelectric speaker vibrate at 3 kHz for 2 s. When the tone is done, the program enters an infinite loop,
displaying the same “Waiting for reset…” message over and over again. Each time the reset button on the BOE
is pressed or the power is disconnected and reconnected, the Program starts over again.

The lines of code in the battery indicator program that generates the tone will be used at the beginning of
every example program from here onward. You could consider it part of the “initialization routine” or “boot
routine” for every Boe-Bot program.

Your Turn

q Copy the freqout command from Program Listing 2.1 to the beginning of Program Listing 1.5 from

Chapter #1, Activity #6.

q Run the modified version of Program Listing 1.5. The Boe-Bot should remain still and beep for two

seconds before starting to move forward.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 4 84 8 • Robotics! Version 1.5

Activity #2: Controlling Distance

Up to now, Boe-Bot programs have featured infinite loops. For example, Program Listing 1.5 made the Boe-
Bot move forward, but that’s all it did. The Boe-Bot just kept going forward. This activity introduces a
technique for controlling the distance the Boe-Bot travels.

Programming for Distance Control

An infinite loop can do a job, but it doesn’t know when to stop. The best way to fix the problem is to replace
the infinite loop with another kind of loop called a for…next loop. You can use a for...next loop to
specify how many times the commands inside the loop are executed.

A for…next loop uses a variable to keep track of how many times the commands inside it are executed. A
for...next loop makes use of a variable to store a number that gets changed each time through the loop. In
PBASIC, a variable has to be declared before it can be used. Program Listing 2.2 shows an example of a
variable declaration and an example of a for…next loop. The for…next loop is used instead of the infinite
loop used in Program Listing 1.5. The for...next loop makes the Boe-Bot go forward and then stop by
controlling the number of pulses sent to the servos.

q Connect the battery pack’s barrel plug into the BOE’s barrel jack.

q Connect the computer’s serial cable to the BOE’s DB9 connector.

q Enter Program Listing 2.2 into the Stamp Editor.

q Run it by clicking Run then selecting Run in the Stamp Editor.

q When the Boe-Bot speaker starts to beep indicating that the program is starting, press and hold the

Reset button on the BOE.

q Unplug the serial cable from Boe-Bot.

q Place the Boe-Bot in the area you want it to navigate.

q Release the Reset button.

q Observe the Boe-Bot’s behavior.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 49

FYI
From this point forward, the procedure just described should be repeated for
each program listing.

' Robotics! v1.5, Program Listing 2.2: Controlling Distance
' {$Stamp bs2} ' Stamp Directive.

'-----Declarations-------

 pulse_count var word ' Declare a variable for counting.

'-----Initialization-----

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Signal program is starting/restarting.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'-----Main Routine-------

main:

 forward:
 ' Forward routine.
 for pulse_count = 1 to 100 ' Loop that sends 100 forward pulses.
 pulsout 12, 500 ' 1.0 ms pulse to right servo.
 pulsout 13, 1000 ' 2.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next

 stop ' Stop until reset.

q Remember to unplug the battery pack from the BOE when you’re not using it.

How the Controlling Distance Program Works

q Look up the for…next and stop commands in Appendix C: PBASIC Quick Reference or in the BASIC

Stamp Manual before continuing.

PBASIC example programs in this text will be organized by section. Three of the five sections commonly used
in a program are featured here: declarations, initialization, and main routine. As the PBASIC programs get
longer and more involved, using comments to denote sections such as '-----Declarations------- and
'-----Initialization----- makes the program considerably easier to read. The sections and their
contents will be discussed in more detail after Program Listing 2.6.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 5 05 0 • Robotics! Version 1.5

A variable named pulse_count is declared to be a word’s worth of variable storage space using the
command pulse_count var word. A word variable can store numbers between 0 and 65535. The handy
thing about a variable is that there are a variety of PBASIC commands that can be used to change the
variable’s value. Other PBASIC commands can use a variable’s value to make decisions. Variables can also be
used instead of numbers as arguments to certain PBASIC commands. You’ll see examples of all these uses of
variables in this chapter.

Table 2.1 shows the other options for variable declarations and the number ranges they can store. The size of
the number a variable can store depends on how many bits it contains. A bit is a single, binary memory
location that can either store a “1” or a “0.” The more bits the larger the binary number you can store.

Table 2.1: Variable Declaration Sizes

Size
Declaration

 Number of
Bits

Can Store Numbers Ranging from-to

bit 1 0 to 1
nib 4 0 to 15

byte 8 0 to 255
word 16 0 to 65535 (or –32768 to +32767)

The four commands in the initialization routine should all be pretty familiar by now. The first two are the
output and freqout commands used to signal when the program starts running. The initialization routine
also includes the low commands that are used to set the initial output values of the I/O lines used to control
the servos.

Remember: If the tone plays for no apparent reason when the Boe-Bot is in the middle of a
maneuver, it indicates a brownout condition caused by low batteries.

The main routine uses a for...next loop followed by a stop command. The for...next loop replaces the
infinite goto loop used in previous examples. The commands nested in the for...next loop should be
familiar by now. They are the commands that send the pulses to the Boe-Bot servos. The values of the
period arguments used in the pulsout commands are the values for making the Boe-Bot roll forward.

The first time through the for next loop, the value of pulse_count is set to “1.” Then the two pulsout
commands and one pause command are executed. When the program gets to the next statement, it jumps
back up to the for statement. The second time through the loop, the for statement adds one to the value of
pulse_count. Now the value of the pulse_count variable is “2,” and the for statement checks to see if
pulse_count is equal to 100 yet. Since pulse_count is not yet 100, the program continues to the next line.
The three commands to pulse the servos and pause for 20 ms are executed again, and the next statement

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 51

sends program control back to the for statement again. The value of pulse_count is incremented again and
compared to the upper limit, and so on.

The 100th time the program gets to the next statement in the for...next loop, it sends the program up to
the for statement again. This time, the value of pulse_count is incremented to 101. Now, when
pulse_count is compared to the value of the end argument, it is greater than the upper limit of 100. So
instead of continuing to the commands that send another pulse, the for statement sends program control to
the command immediately after the next statement.

The stop command is executed immediately after the for...next loop, and it makes the program stop.
The only thing that can get the BASIC Stamp out of a stop command is a hardware reset. In other words, if
you want to run the program again, press the Reset (Rst) button on the BOE.

Your Turn

q Modify the main routine of Program Listing 2.2 as shown below.

'-----Main Routine-------

main: ' Main routine.

 forward: ' Forward routine.
 for pulse_count = 1 to 75 ' Send 75 forward pulses.
 pulsout 12, 500 ' 1.0 ms pulse to right servo.
 pulsout 13, 1000 ' 2.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next

 pause 500 ' Pause for 0.5 s.

 backward:
 for pulse_count = 1 to 75 ' Send 75 backward pulses.
 pulsout 12, 1000 ' 2.0 ms pulse to right servo.
 pulsout 13, 500 ' 1.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next

 pause 500 ' Pause for 0.5 s.

 stop ' Stop until reset.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 5 25 2 • Robotics! Version 1.5

q Run the second modified version of Program Listing 2.2 again. The modified version of Program Listing
2.2 should make your Boe-Bot move forward, then backward, then stop.

When programming the Boe-Bot, the goal is often to make it move a
specific distance or to execute a particular turn. It is helpful to know how
to figure out how far the Boe-Bot will travel or turn when it is given a
specific command. Circumference is equal to pi (π) multiplied by the
wheel diameter:

circumference = π x wheel diameter

circumference = 3.14159 x 6.67 cm ≅ 21 cm

So, now we know that with one complete turn of the wheels, the Boe-Bot
travels about 21 cm.

 If we send pulses to the servo for the correct amount of time, the Boe-Bot can be made to travel a specific
distance. This is because we can measure the speed that the Boe-Bot wheels turn. Once the speed is known,
speed multiplied by time gives you distance. For example, with a pulsout command of 1000 delivered every
20 ms, the servo will turn at about 37.5 revolutions per minute (RPM), or 0.625 revolutions/sec. So the speed
will be about:

21 cm/revolution x 0.625 revolutions/sec = 13.125 cm/s

The time it takes to make the Boe-Bot travel 50 cm is:

ttravel = 50 cm ÷ 13.125 cm/s ≅ about 3.81 seconds

Since the pulse and pause periods are known, the time it takes for a single loop can be calculated:

 tloop = 1.0 ms + 2.0 ms + 20 ms = 23 ms

Calculating the number of loops (the end argument for the for...next loop) is simply a matter of dividing
tloop into ttravel.

Number of loops = 3.81 sec ÷ 23 ms/loop

= 3.81 s ÷ 0.023 s/loop ≅ 166 loops

Figure 2.3: Wheel Diameter and
Circumference

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 53

q Modify Program Listing 2.2 for 166 forward loops (50 cm), then run it.

How far did the Boe-Bot go? Several factors can affect how far it moves, including differences between
servos and battery voltage. However, the estimate of 166 is a good initial value to try. The for...next
loop’s end argument can then be fine tuned.

Activity #3: Maneuvers – Making Turns

If the same value is added to the center pulse width of one servo and subtracted from the center pulse width
of the other, the Boe-Bot will travel in a straight line, either forward or backward. When the right servo gets
a pulsout period of 500 (1.0 ms) and the left servo gets a pulsout period of 1000 (2.0 ms), the Boe-Bot
goes forward. When the pulse periods for each servo are swapped, the Boe-Bot goes backward.

If both servos receive 1.0 ms pulses, they turn in the same direction and cause the Boe-Bot to rotate
counterclockwise. If many pulses are applied, the Boe-Bot will keep rotating. If 35 or so pulses are applied,
the net effect is in the neighborhood of a 90° left turn. The same principles apply if both servos receive 2.0
ms pulses, except that the Boe-Bot will rotate clockwise instead of counterclockwise.

Programming Left and Right Turns

Program Listing 2.3 illustrates how the forward and backward routines from Program Listing 2.2 can be
modified to make the Boe-Bot execute turns.

q Enter and run Program Listing 2.3.

' Robotics! v1.5, Program Listing 2.3: Turning in place.
' {$Stamp bs2} ' Stamp Directive.

'-----Declarations-------

 pulse_count var word ' Declare a word size loop counter.

'-----Initialization-----

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Send a 3 kHz signal for 2 s.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'-----Main Routine-------

main: ' Main routine

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 5 45 4 • Robotics! Version 1.5

 left_turn: ' Left turn routine.
 for pulse_count = 1 to 35 ' Send 35 left rotate pulses.
 pulsout 12, 500 ' 1.0 ms pulse to right servo.
 pulsout 13, 500 ' 1.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next

 pause 500 ' Pause for 0.5 s.

 right_turn: ' right turn routine.
 for pulse_count = 1 to 35 ' Send 35 left rotate pulses.
 pulsout 12, 1000 ' 2.0 ms pulse to right servo.
 pulsout 13, 1000 ' 2.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next

 pause 500 ' Pause for 0.5 ms.

 stop ' Stop until reset.

How the Turning in Place Program Works

Only three changes were made to Program Listing 2.2 in order to make Program Listing 2.3. First, the
forward: and backward: labels were changed to left_turn: and right_turn: respectively. Then, the
left_turn routine had both pulsout period arguments set to 500. The pulsout arguments in the
right_turn routine were both set to 1000.

Your Turn

q Add the forward and backward routines from Program Listing 2.2 to Program Listing 2.3. To make the

Boe-Bot go forward and backward before turning left and right, insert the forward and backward
routines between the main: label and the left_turn: label. Run the program and observe the results.

q Instead of using an end argument of 35 for each turn for...next loop, try end arguments of 30, 31,

32,..., 39, 40. Record the value that makes the Boe-Bot do the most precise quarter turn. The values may
or may not be the same for both left_turn and right_turn routines.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 55

Activity #4: Maneuvers – Ramping

Ramping is a way to gradually increase the speed of the servos instead of suddenly making them go the
opposite direction. This technique can increase the life expectancies both of your Boe-Bot’s batteries and
servos.

Programming for Ramping

The key to ramping is to use variables along with constants for servo pulse period. A for…next loop
increments a variable each time the code nested between the for and next statements are executed. Since
the value of this variable increases incrementally, it can be used to gradually increase the pulse widths.
Program Listing 2.4 shows how this technique can be used to make the Boe-Bot ramp up to and back down
from the speed used in the forward routine.

' Robotics! v1.5, Program Listing 2.4: Ramping for Start and Stop
' {$Stamp bs2} ' Stamp Directive.

'-----Declarations-------

 pulse_count var word ' For...next loop counter.
 right_width var word ' Variable stores right pulse width.
 left_width var word ' Variable stores left pulse width.

'-----Initialization-----

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Signal program is starting/restarting.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'-----Main Routine-------

main: ' Main routine.
 ramp_up_forward: ' Routine ramps into forward motion.
 for pulse_count = 0 to 250 step 2 ' For loop counts up in steps of 2.
 pulsout 12, 750 - pulse_count ' Pulse sent is 1.5 ms – pulse_count value.
 pulsout 13, 750 + pulse_count ' Pulse sent is 1.5 ms + pulse_count value.
 pause 20 ' Pause for 20 ms.
 next

 forward: ' Forward routine.
 for pulse_count = 1 to 100 ' Loop that sends 100 forward pulses.
 pulsout 12, 500 ' 1.0 ms pulse to right servo.
 pulsout 13, 1000 ' 2.0 ms pulse to left servo.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 5 65 6 • Robotics! Version 1.5

 pause 20 ' Pause for 20 ms.
 next

 ramp_down_forward: ' Routine ramps out of forward motion.
 for pulse_count = 250 to 0 step 2 ' For loop counts down in steps of 2.
 pulsout 12, 750 - pulse_count ' Pulse sent is 1.5 ms – pulse_count value.
 pulsout 13,750 + pulse_count ' Pulse sent is 1.5 ms + pulse_count value.
 pause 20 ' Pause for 20 ms.
 next

 stop ' Stop until reset.

How the Ramping Program Works

The pulses in the ramp_up_forward routine are nested in a for…next loop. Note the step 2 argument
added to the for statement. None of the previous for...next loop examples used this argument, so the
value of pulse_count was incremented in steps of 1. The step 2 argument in the for statement makes the
value of pulse_count increment in steps of 2.

 ramp_up_forward:
 for pulse_count = 0 to 250 step 2
 pulsout 12, 750 - pulse_count
 pulsout 13, 750 + pulse_count
 pause 20
 next

The first time though the for...next loop, the value of pulse_count is “0.” The second time through,
pulse_count is incremented to “2,” and the third time through it’s “4,” and so on, up to 250. The key to
ramping is to modify the pulse period a little each time a pulse is sent to the servo until it’s up to the desired
period. Incorporating the value of pulse_count into the period argument of each pulsout command can
be used to incrementally increase the pulse period in this way.

Let’s take a look at the pulses sent to the right servo. The command for sending the pulse is pulsout 12,
750 – pulse_count. Each time through the for...next loop, the value of pulse_count increases by
two. This means that each time through the loop, the value of the pulsout command’s period argument is
decreased by two, since pulse_count is subtracted from 750. By the last pass through the loop, the value of
pulse_count is up to 250, which is subtracted from 750 to give a value of 500. For the left servo, the value
of pulse_count is added to 750, and the last time through the loop gives a period of 1000. When these
target values are reached, the servos are up to full speed forward, and the program can move on to the
familiar forward routine.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 57

When the forward routine is finished, the challenge is to ramp the pulse widths back down to the resting
value of 750. A useful feature of PBASIC is that for...next loops count down instead of up if the start
argument is larger than the end argument. This method was used for counting back down in the
ramp_down_forward routine. The for…next loop started pulse_count at a value of 250, then counted
down to 0 in steps of 2. This is because the command for pulse_count = 100 to 0 step 2 was used.

Your Turn

q Develop routines that ramp into and back out of the backward, right_turn and left_turn routines

developed in Activity #2 and #3.

It will take some fine tuning to get the Boe-Bot to do 90° and 180° turns. Adjusting for statement’s step,
start and end arguments will help make the turns more accurate. For the 90° turns, it’s also possible to
ramp into and back out of the turns without ever reaching full speed (pulse width).

Activity #5: Remembering Long Lists Using EEPROM

The BASIC Stamp stores its tokenized version of the PBASIC program in electrically erasable programmable
read only memory (EEPROM). Physically, the EEPROM is the small black chip on the BASIC Stamp II module
labeled "24LC16B.” This part is made by Microchip Inc. The BASIC Stamp’s EEPROM can hold 2048 bytes (2 kB)
of information. What’s not used for program storage (which builds from address 2047 toward address 0) can
be used for data storage (which builds from address 0 toward address 2047).

FYI
If the data collides with your program, the PBASIC program won't execute
properly.

EEPROM memory is different from RAM variable storage in several aspects:

• EEPROM takes more time to store a value, sometimes up to several milliseconds.
• EEPROM can accept a finite number of write cycles, around 10 million writes. RAM has unlimited

read/write capabilities.
• The primary function of the EEPROM is to store programs; data is stored in leftover space.

You can view the contents of the BASIC Stamp’s EEPROM by clicking Run and selecting Memory Map. Figure
2.4 shows the memory map for Program Listing 2.3. Note the Condensed EEPROM Map in the lower middle of
the figure. The narrow stripe across the bottom represents the small portion of EEPROM that Program
Listing 2.3 occupies.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 5 85 8 • Robotics! Version 1.5

This program might have seemed large while you
were typing it in, but it only takes up 128 of the
available 2048 bytes of available program memory.
There currently is enough room for quite a long list
of instructions. One of the simpler approaches is
to store characters indicating which way to go.
Since a character occupies a byte in memory, there
is currently room for 1920 one-character direction
instructions.

EEPROM Navigation

The data directive is usually placed in the
declarations section of a PBASIC program, and
it’s the best way to store long lists. Program Listing
2.5 shows an example of how the data directive
can be used to store lists of Boe-Bot navigation
instructions.

' Robotics! v1.5, Program Listing 2.5: EEPROM Navigation
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

' Label for the declarations routine.
 pulse_count var word ' Declare a variable named pulse_count.
 EE_address var byte ' Stores & increments EEPROM address.
 instruction var byte ' Stores instruction retrieved from EEPROM.

 data "FFFBBLFFRFFQ" ' List of Boe-Bot navigation instructions.

'----- Initialization ------------

 output 2 ' Set piezoelectric speaker line to output.
 freqout 2, 2000, 3000 ' Send the program start/low battery tone.
 low 12 ' Set P12 to output-low.
 low 13 ' Set P13 to output-low.

'----- Main Routine --------------

main: ' Main routine label.

Figure 2.4: BASIC Stamp memory map.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 59

 read EE_address, instruction ' Read at EE_address & store in instruction
 EE_address = EE_address + 1 ' Increment EE_address for next read

 if instruction = "F" then forward ' Check for forward command.
 if instruction = "B" then backward ' Check for backward command.
 if instruction = "R" then right_turn ' Check for right turn command.
 if instruction = "L" then left_turn ' Check for left turn command.

 stop ' Stop executing commands until reset

'----- Navigation Routines -------

 forward: ' Forward routine.
 for pulse_count = 1 to 75 ' Send 75 forward pulses.
 pulsout 12, 500 ' 1.0 ms pulse to right servo.
 pulsout 13, 1000 ' 2.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next
 goto main ' Send program back to the main.

 backward:
 for pulse_count = 1 to 75 ' Send 75 backward pulses.
 pulsout 12, 1000 ' 2.0 ms pulse to right servo.
 pulsout 13, 500 ' 1.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next
 goto main ' Send program back to the main.

 left_turn: ' Left turn routine.
 for pulse_count = 1 to 35 ' Send 35 left rotate pulses.
 pulsout 12, 500 ' 1.0 ms pulse to right servo.
 pulsout 13, 500 ' 1.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next
 goto main ' Send program back to the main label.

 right_turn: ' right turn routine.
 for pulse_count = 1 to 35 ' Send 35 left rotate pulses.
 pulsout 12, 1000 ' 2.0 ms pulse to right servo.
 pulsout 13, 1000 ' 2.0 ms pulse to left servo.
 pause 20 ' Pause for 20 ms.
 next
 goto main ' Send program back to the main .

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 6 06 0 • Robotics! Version 1.5

How the EEPROM Navigation Program Works

q Look up the data, read and if...then commands in Appendix C: PBASIC Quick Reference or in the

BASIC Stamp Manual before continuing.

Program Listing 2.5 introduces two new variables. Instead of being words, both of them are bytes, which
means they can store numbers between zero and 255. The first new variable is EE_address, which is used
for specifying the EEPROM address to read a direction instruction from EEPROM. The second new variable is
named instruction. This variable is used to store the instruction character read from EEPROM.

declarations:
 pulse_count var word
 EE_address var byte
 instruction var byte

The next declaration is the actual data to be stored in EEPROM. This data is stored as a string of characters.
When these characters are stored, they are stored as numbers that correspond to the letters you see in the
data directive. In the Your Turn section of this activity, you’ll view the memory map and look at both the
characters and their numeric representations in EEPROM.

 data "FFFBBLFFRFFQ" ' Movement data

Although the initialization routine is the same one used in Program Listing 2.3, the main routine is not. The
main routine first reads EEPROM address 0, and stores it in the instruction variable. Then, EE_address is
incremented so that the next read cycle will look at address 1. A series of if...then statements is used to
decide what to do based on the character retrieved from EEPROM and stored in the instruction variable.
The if...then statements check to see if it’s one of four known instruction characters: “F,” “B,” “R,” and “L.”
For example, if the character is an “R,” the first two if...then statements are skipped because neither of
them is true. Since the third if...then statement is true, the program skips to the right_turn routine.

main:
 read EE_address, instruction
 EE_address = EE_address + 1

 if instruction = "F" then forward
 if instruction = "B" then backward
 if instruction = "R" then right_turn
 if instruction = "L" then left_turn

 stop

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 61

When the program gets to the right_turn routine, it executes 35 right turn pulses. Then the goto main
command sends the program back to the main routine.

 right_turn:
 for pulse_count = 1 to 35
 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
 next
 goto main

When the program gets back to the main routine, the next EEPROM instruction is fetched, and the instruction
is checked by the four if...then statements again. The process is repeated until the quit character “Q” is
read from EEPROM. When “Q” is loaded into the instruction variable, it fails all four if...then tests. So,
the program does not go to any of the navigation routines. Instead, the program goes to the command that
follows the series of if...then statements, which is the stop command.

Your Turn

q With Program Listing 2.5 active in the Stamp

Editor, click Run and select Memory Map.

Your stored instructions will appear highlighted in
blue at the beginning of the Detailed EEPROM Map
as shown in Figure 2.5. The numbers shown are the
hexadecimal ASCII (American Standard Code for
Information Interchange) codes that correspond to
the letters you entered in your data statement.

q Click the Display ASCII checkbox near the

lower-right corner of the Memory Map
window.

Figure 2.5: Memory Map with stored instructions visible in
Detailed EEPROM Map.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 6 26 2 • Robotics! Version 1.5

Now the direction instructions will appear in a
more familiar format shown in Figure 2.6. Instead
of ASCII codes, they appear as the actual
characters you recorded using the data directive.

In its current form, Program Listing 2.5 can only
access up to 256 characters. If the EE_address
variable is re-declared to be a word variable, you
can address more locations than the EEPROM
actually contains. Keep in mind that if your
program gets larger, the number of available
EEPROM addresses for holding data gets smaller.

You can modify the existing data string to a new set of directions. You can also add additional data
statements. The data is stored sequentially, so the first character in the second data string will get stored
immediately after the last character in the first data string.

q Try changing, adding, and deleting characters in the data directive. Remember that the last character in

the data directive should always be a “Q.”

q Try adding a second data directive. Remember to remove the “Q” from the end of the first data

directive and add it to the end of the second. Otherwise, the program will execute only the commands in
the first data directive.

Activity #6: Simplify Navigation with Subroutines

All the navigation routines in Activity #5 ended with goto commands. Each goto command sent program
control to the main: label. A similar technique involves the use of subroutines, and several example
programs in this text will make use of them. Since the example program in Activity #7 makes use of
subroutines, let’s take a look at how one works before moving on.

Programming Navigation with Subroutines

A subroutine is a segment of code that does a particular job. To make the subroutine do its job, a command is
used in the main routine that “calls” the subroutine. The command for calling a subroutine is the gosub
command, and it’s similar to the goto command. A goto command tells the program to go to a label, and
then start executing instructions. The gosub command tells the program to go to a label, and start executing
instructions, but come back when finished. A subroutine is finished when the return command is
encountered.

Figure 2.6: Close-up of the detailed EEPROM Map after Display
ASCII box is checked.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 63

Program Listing 2.6 uses a different technique for navigation. It sets variable values for number of pulses
delivered and servo pulse widths. After the variable values have been set, the main program calls a
subroutine that makes use of the information stored in the variables to pulse the servos.

' Robotics! v1.5, Program Listing 2.6: Subroutine Navigation.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

loop_count var word ' For...next loop counter.
right_width var word ' Variable stores right pulse width.
left_width var word ' Variable stores left pulse width.
pulse_count var byte ' Used to set number of pulses delivered.

'----- Initialization ------------

output 2 ' Set P2 to output.
freqout 2, 2000, 3000 ' Signal program is starting/restarting.
low 12 ' Set P12 and 13 to output-low.
low 13

'----- Main Routine --------------

main: ' Main routine.

 forward: ' Forward routine.
 pulse_count = 75 ' Set pulse count for 75 pulses.
 right_width = 500 ' Set right pulse width to 1.0 ms.
 left_width = 1000 ' Set left pulse width to 2.0 ms.
 gosub pulses ' Call the pulses subroutine.
 pause 500 ' Pause for 0.5 s.

 backward: ' Backward routine.
 pulse_count = 75 ' Set pulse count for 75 pulses.
 right_width = 1000 ' Set right pulse width to 2.0 ms.
 left_width = 500 ' Set left pulse width to 1.0 ms.
 gosub pulses ' Call the pulses subroutine.
 pause 500 ' Pause for 0.5 s.

goto main ' Go to main label (infinite loop).

'----- Subroutines ---------------

pulses: ' Pulses subroutine.
 for loop_count = 1 to pulse_count ' Use pulse_count for number of pulses.
 pulsout 12, right_width ' Use right_width for right pulse width.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 6 46 4 • Robotics! Version 1.5

 pulsout 13, left_width ' Use left_width for left pulse width.
 pause 20 ' Pause 20 ms.
 next
return ' Return from subroutine.

How the Subroutine Navigation Program Works

q Look up the gosub and return commands in Appendix C: PBASIC Quick Reference or in the BASIC Stamp

Manual before continuing.

Figure 2.7 shows how the backward routine calls
the pulses subroutine. The commands in the
pulses subroutine are executed until the
program gets to the return command. The
return command sends the program back to
the command just after gosub pulses
command, which is pause 500 in this case. This
same process occurred in the forward routine,
which was executed before the backward
routine shown.

Your Turn

q Add routines to the main routine that set

the values for right_turn and left_turn.

Activity #7: All Together Now

This chapter has introduced a variety of navigation techniques:

• navigation routines that control distance and turning
• speed ramping
• remembering long lists
• calling subroutines
• using variables to set values used by subroutines

All these elements now can be tied together to make a more robust navigational program.

 backward:
 pulse_count = 75
 right_width = 1000
 left_width = 500
 gosub pulses
 pause 500

goto main

Subroutines:

 pulses:
 for loop_count = 1 to pulse_count
 pulsout 12, right_width
 pulsout 13, left_width
 pause 20
 next
 return

Figure 2.7: Program flow for subroutines.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 65

Programming EEPROM Navigation with Ramping

The data directive in Program Listing 2.7 records two different things in EEPROM for each maneuver: a
direction and a number of pulses to deliver. Both values are stored in variables. The subroutine that delivers
the pulses to the servos does automatic ramping into and out of each maneuver.

' Robotics! v1.5, Program Listing 2.7: EEPROM Navigation with Ramping
' of navigational instructions.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 pulse_count var byte ' Used to set number of pulses delivered.
 loop_count var byte ' For...next loop counter.
 right_width var word ' Variable stores right pulse width.
 left_width var word ' Variable stores left pulse width.
 old_right var word ' Stores previous right pulse width.
 old_left var word ' Stores previous left pulse width.
 right_gap var word ' Difference btwn target and actual width.
 left_gap var word ' Difference btwn target and actual width.
 EE_address var byte ' Stores & increments EEPROM address.
 instruction var byte ' Stores instruction retrieved from EEPROM.
 direction var byte ' Stores number from data table for branch.

 data "F", 125, "B", 125, "R", 75, "L", 100, "F", 150, "Q"

'----- Initialization ------------

 right_width = 750 ' Set initial values for variables.
 left_width = 750
 old_right = 750
 old_left = 750
 pulse_count = 0
 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Signal program is starting/restarting.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main: ' Main routine.

 gosub pulses ' Call the pulses subroutine.

 read EE_address, instruction ' Read the first EEPROM instruction.
 read EE_address + 1, pulse_count ' Read the second EEPROM instruction.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 6 66 6 • Robotics! Version 1.5

 EE_address = EE_address + 2 ' Increment EE_address by 2.

 ' The lookdown instruction is used together with the branch instruction
 ' to direct the program to the appropriate routine for setting pulse widths.
 ' After the variable values are set, program control is returned to main.
 ' The first command in the main routine calls the pulses subroutine.

 lookdown instruction, = ["B","L","R","F","Q"], direction
 branch direction,[backward,left_turn,right_turn,forward,quit]

 backward: right_width = 1000: left_width = 500: goto main
 left_turn: right_width = 500: left_width = 500: goto main
 right_turn: right_width = 1000: left_width = 1000: goto main
 forward: right_width = 500: left_width = 1000: goto main

 quit: stop

'----- Subroutines ---------------

 ' The target pulse values of left_width and right_width are compared to
 ' their previous values. The right_gap and left_gap variables are used to
 ' determine the pulse widths. See the How EEPROM Navigation with Ramping
 ' Works section for further explanation.

 pulses:
 right_gap = right_width - old_right
 left_gap = left_width - old_left

 for loop_count = 1 to pulse_count

 right_gap = right_gap - 5 + (10*right_gap.bit15)
 left_gap = left_gap - 5 + (10*left_gap.bit15)

 pulsout 12, right_width - right_gap
 pulsout 13, left_width - left_gap

 pause 20

 next

 old_right = right_width - right_gap
 old_left = left_width - left_gap

 return

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 67

Advanced Topic: How EEPROM Navigation with Ramping Works

q Look up each of the following new commands in Appendix C: PBASIC Quick Reference or in the BASIC

Stamp Manual before continuing: lookdown, branch.

Six word-size variables are added to the declarations section of Program Listing 2.5. The variables old_left
and old_right are for remembering the previous pulse period for each servo. The variables right_gap
and left_gap are variables that change slightly each time a pulse is applied. When the gap is large, the pulse
width is closer to the old pulse values. When the gap is small, the pulses are closer to the new pulse periods.

The data directive has been restructured so that it stores a direction, followed by a number of pulses. This
way, the Boe-Bot can be given directions like: go forward 125 pulses, then backward 125 pulses, then right 75
pulses, and so on.

Initial values are set for the variables that keep track of pulse widths. They all start with the center value of
750. The first command in the main routine is gosub pulses. Since the initial number of pulses to deliver is
a value of “0,” and the initial values of the old and current servo instructions are at center, the pulses routine
will do nothing the first time through. Every time through the main routine after that, the gosub command
calls the pulses subroutine, which pulses the servos with values determined from the previous pass through
the main routine.

There are now two read commands in the main routine instead of just one. This is so that both the direction
and number of pulses can be read. The first read command still accesses a letter that denotes a Boe-Bot
direction. The second read command looks up EE_address + 1, which is the location of the number that
follows the direction in the data statement. This is a handy way to access the pulse count value in a single
command. Then EE_address is incremented by two instead of one. This way, the next time the first read
command looks for a letter, it will skip over the number (of pulses) and find the next letter in the sequence.

Now that a letter indicating direction has been stored in the instruction variable and the number of pulses
have been stored in the pulse_count variable, it’s time for the BASIC Stamp to figure out what that letter
stored in instruction means. Instead of using a series of if...then statements, two commands are used.
The first is the lookdown command. The lookdown command will take the value “B” from instruction and
find that it’s the first in the list. Actually, as far as the lookdown command is concerned, it’s really the zero
entry in the list since the lookup command starts counting from zero. So, it stores the number 0 in the
direction variable. If instruction is an “L,” the number 1 will be stored in direction. If instruction
is “R,” the number 2 will be stored in direction, and so on.

The branch command skips to a label based on the variable’s value. If direction is “0,” branch will skip to
the backward routine. If direction is “1,” branch will skip to the left_turn label. If direction is “2,”
branch will skip to the right_turn label, and so on.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 6 86 8 • Robotics! Version 1.5

You may not have been aware that you could place more than one command separated by colons on a line.
The backward, left_turn, right_turn, forward, and quit routines each occupy a single line. The only
problem that can occur when multiple PBASIC commands are on a single line is that a label cannot be found in
the middle of a line, only at the beginning. Each of the direction routines sets the value of right_width
and left_width period values, just as in previous programs. Instead of calling the pulses routine, each of
the four direction routines ends with a goto main command. Note that as soon as the program gets to
main, it calls the pulses subroutine.

The pulses subroutine first determines the difference between the previous value sent to it for each servo
and the current value. Taking the right servo as an example, the variable that stores this value is right_gap,
because it stores the current right_width minus the old_right width. The process is the same for the left
servo, except the sign is reversed. Next, the for...next loop applying pulse_count pulses is started.

Assuming that right_width is different from old_right, the right_gap value will start large. Since
right_gap is subtracted from right_width when the pulsout command is executed, it stands to reason
that the right_gap value should initially be large. Then, with each pulse, the right_gap value should get
smaller and smaller as the pulse width ramps up to its target value. A single command takes care of
decrementing right_gap if it’s positive and incrementing it if it’s negative.

right_gap = right_gap - 5 + (10*right_gap.bit15)

How does this expression work? If right_gap is a positive number, right_gap.bit15 will be zero. So, if
right_gap is positive, it still gets 5 subtracted from it. However, if right_gap is negative, right_gap.bit15 is
“1,” not “0.” This is because of how the two’s complement binary system works in the BASIC Stamp. This
means that right_gap also gets 10 added to it for a net gain of 5. The same principle applies for the
left_gap.

Next the pulses are delivered. Note that each period argument is an expression. For the pulsout command
to P12, the period is right_width – right_gap, and for the period delivered to P13, it’s left_width
– left_gap.

It’s important to keep track of what very last pulse values delivered to the servos were before fetching the
next navigation instruction from EEPROM. The two commands after the for...next loop that delivers
pulses save the pulse widths.

 old_right = right_width - right_gap
 old_left = left_width - left_gap

The next time the program returns to the pulses subroutine, the first two commands set the initial values:

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 69

 pulses:
 right_gap = right_width-old_right
 left_gap = left_width - old_left

The for...next loop works in the pulses subroutine gradually adjusts the pulse values from where they
started to the target value.

Your Turn

q Modify the data statement to make the Boe-Bot draw a square with one-meter sides. You can add a

second data statement right below the first if you need more instructions. Just remember that there
should only be one “Q” at the very end of the last data statement.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 7 07 0 • Robotics! Version 1.5

A low battery indicator circuit was built and tested using a BASIC
Stamp program. This chapter also introduced a variety of PBASIC
programs to make the Boe-Bot execute different maneuvers.
Examples include controlling the Boe-Bot’s distance and turns, along
with methods for programming the Boe-Bot to travel measured
distances. Examples of speed ramping, EEPROM navigation as well as
an example of integrating the navigation algorithms introduced in this
chapter also were provided.

Real World Example

When the Boe-Bot’s batteries go below a certain level, the Boe-Bot sends a signal indicating that something
went wrong by sending electronic pulses to a piezoelectric speaker. These speakers are common. Think of
the number of appliances that beep when you press a key or do something. Your microwave oven, grocery
store cash registers, and alarm system keypads all have this feature. It should come as no surprise that each
has a microcontroller monitoring the keys on a keypad. Level sensors are also common in industry, where
voltage, pressure, temperature and a variety of other conditions have to be controlled. Microcontrollers are
often used to monitor these conditions and make an alarm speaker sound when the process goes outside
acceptable levels.

Micro-controlled motion is also all around us. Although there may not be that many autonomous rolling
robots in your household yet, there are many other gizmos with micro-controlled moving parts. Printer
heads and computer disk drives are two examples that use stepper motors. Servos controlled by
microcontrollers are also used in a variety of places. Many automobile systems rely on servos to control small
moving parts in various engine and emission systems. Industrial servos maintain many factory processes,
often in conjunction with the level sensors discussed earlier.

Boe-Bot Applications

Programmed navigation is the foundation for a variety of other Boe-Bot activities. In the Projects section,
you’ll work on programming the Boe-Bot to navigate a variety of shapes and on fine tuning some of the
navigational algorithms developed in this chapter. In Chapter #3, we’ll use some of these routines to respond
to sensor inputs. The navigation routines developed in this chapter will be especially helpful in getting around
obstacles that are detected. One of the most popular occupations for autonomous robots is solving mazes,
which are full of obstacles. Appendix I has the Boe-Bot competition rules, which feature a variety of obstacles
that need to be navigated. Responding automatically to certain situations can increase the Boe-Bot’s ability
to navigate features within the maze. For example, when a corner is detected, instead of trying to navigate
the corner based solely on sensor input, the Boe-Bot can rely on preprogrammed routines, stored in EEPROM.

Summary and
Applications

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 71

Questions and Projects

Questions

1. How does the Boe-Bot’s low battery indicator work?

2. Name and describe the three arguments needed to make a freqout command work.

3. Which argument in Program Listing 2.2 controls the distance of the forward routine?

4. What is the period of the pause before the stop in Program Listing 2.2?

5. What are the left and right servo pulse widths, in ms, for forward, backward, left turn and right turn?

6. What PBASIC for...next loop feature makes ramping back down as easy as ramping up in Program
Listing 2.4?

7. What is the difference between a routine and a subroutine? What command is used to call a

subroutine? What happens when a subroutine is finished? What command signifies that a
subroutine is finished, and what does it do?

8. How many memory locations does the BASIC Stamp’s EEPROM have? Where does program memory

start in the EEPROM, and which way does it build as the program gets larger? Where does data
storage start in the EEPROM, and which way does it build as more data is added? What command is
used to retrieve data from the EEPROM?

9. What argument comes after the if in an if...then statement? What argument comes after the

then?

10. How does the lookdown command in Program Listing 2.7 make the transition from the letters read
from EEPROM to the numbers used in the branch command?

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 7 27 2 • Robotics! Version 1.5

Exercises

1. Adjust the tone generated in Program Listing 2.1 so the frequency of the tone played by the

piezoelectric speaker is 1.5 kHz with a period of three seconds.

2. Assume that your program has become quite large, and you need to conserve RAM. Change the

pulse_count variable declaration in Program Listing 2.2 so that it requires half the RAM currently
used (8-bits instead of 16).

3. Increase the pause period between left turn and right turn in Program Listing 2.3 to two seconds.

4. Modify Program Listing 2.4 so that it’s ramping rate doubles.

5. Program Listing 2.5 currently accepts any letter other than “F,” “B,” “R,” and “L” to end the program.

Modify it so that it only accepts the letter “Q.”

6. Modify Program Listing 2.6 so that it can travel up to 65534 pulses in a single subroutine execution?

7. Modify Program Listing 2.7 so that the lookdown command is no longer necessary. Hint: Store digits
instead of letters for direction control.

Projects

One aspect of Boe-Bot navigation that was not covered in this chapter is drawing curves. A curve occurs any
time the left wheel is not turning the same speed as the right wheel. Curves also occur when the left wheel is
accelerating/decelerating at a different rate than the right wheel. Keep in mind that the number of pulses
delivered is a way of controlling distance for a given pulse width (speed).

1. The Boe-Bot is being used to transport reactive material, in particular solid sodium and water. If the
two react, they explode, leaving your Boe-Bot as a pile of components. In order to carefully transport
the chemicals, you will need to start movements with gradually increasing velocity. Create a program
that drives the Boe-Bot in a one-meter square with smooth turning transitions.

2. Create a simple movement pattern with several directions, for example F,B,R,R,F,F,L, and lastly F.

These patterns would be stored and read from the EEPROM. When you are done executing the
pattern, trace the same pattern backwards.

Chapter #2: Programming the Boe-Bot to Go Places

Robotics! Version 1.5 • P a g e P a g e 73

3. Create source code for the following movement patterns:

Figure 2.8: Boe-Bot paths to program.

Chapter #2: Programming the Boe-Bot to Go Places

P a g e P a g e 7 47 4 • Robotics! Version 1.5

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 75

 Tactile Navigation

The Whiskers kit is so named because the kit’s bumper switches
look like whiskers, though some argue they look more like
antennae. At any rate, whiskers give the Boe-Bot the ability to
sense the world around it with tactile inputs. The Boe-Bot can
use these whiskers to navigate only by touch. Although the
activities in this chapter focus on using just the whiskers, they
can also be used with other sensors to increase the Boe-Bot’s
functionality.

Activity #1: Building and Testing the Whiskers

Parts

 (2) 10 kΩ resistors
 (2) 3-pin headers
 (2) 3/8” 4/40 male/female standoffs
 (2) ¼” 4/40 machine screws
 (2) Boe-Bot bumper wires
 (2) Nylon washers size #4

 Figure 3.1 Whiskers parts

Build It!

Your #1 point Phillips screwdriver and quarter-inch combination wrench will come in handy here. Before
getting started on whisker construction, take a close look at Figure 3.2. Use these pictures as a guide while
constructing the mechanical part of the Whiskers kit. Figure 3.3 shows the whiskers wiring diagram. Follow it
for making the necessary electrical connections.

Chapter #3: Tactile
Navigation with
Whiskers

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 7 67 6 • Robotics! Version 1.5

Figure 3.2: Pictures of Boe-Bot with Whiskers

q Remove the two front screws that hold your

Board of Education to the front standoffs.

q Screw in the male/female standoffs included

in the Whiskers kit in place of the screws
that were just removed.

ü
 TIP

Hold the male/female standoff by
the servo port while turning the
standoff between the BOE and
Boe-Bot chassis to tighten it. The
standoff between the BOE and
chassis won’t turn until you
loosen the screw that holds it to
the chassis. Make sure to
retighten it when you’re done.

q Place a nylon washer on top of each

standoff.

q Thread each screw removed in the first step through the open loop of a whisker.

q Screw each screw into a standoff sandwiching the loop of the whisker between the screw head and the

nylon washer. Make sure the whiskers are oriented as shown in Figure 3.2 and 3.3.

X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Red
Black

Board of Education
www.stampsinclass.com

(916) 624-8333

(c) 2000

Rev BX4 X5

15 14 13 12

To
Servos

Figure 3.3: Whiskers wiring diagram.

Left
Whisker

Right
Whisker

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 77

Whisker Inputs

Figure 3.4 is a schematic representation of the
circuit you’ve just built. Each whisker is both the
mechanical extension and the ground electrical
connection of a normally open, single-pole, single-
throw switch. The BASIC Stamp can be programmed
to detect when a whisker is pressed. I/O pins
connected to each switch circuit monitor the voltage
at the 10 kΩ pull-up resistor. When a given whisker
is not pressed, the voltage at the I/O pin connected
to that whisker is 5 V (logic 1). When a whisker is
pressed, the I/O line is shorted to ground, so the I/O
line sees 0 V (logic 0).

Testing the Whiskers

Testing each whisker can be done with the Debug
Terminal. This time, instead of displaying a printed
message, the Debug Terminal is used to display the
input voltage seen by the I/O pins connected to the
whiskers.

Each BASIC Stamp I/O pin is connected to a memory location in RAM. You can see these memory locations by
viewing the Memory Map. This is the same window used to view the BASIC Stamp’s EEPROM in Chapter 2,
Activity #5.

q Open the Memory Map by selecting Memory Map from the Stamp Editor’s Run menu.

10 kΩ

Vdd

Right
Whisker

P4

P6

Vss

10 kΩ

Vdd

Left
Whisker

Vss

P2

Vss

Piezo

Figure 3.4: Whiskers Schematic.

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 7 87 8 • Robotics! Version 1.5

The top three rows in the RAM Map are memory locations
connected directly to the I/O pins. The row of numbers
across the top indicates the bit address for each location
in a given row. The ins, outs, and dirs rows all refer to
I/O registers.

The first row corresponds to the ins register, and it
refers to a memory location that holds 16 bit values, each
of which is either a 1 or a 0. Each bit in the ins register
monitors the input value for an I/O pin. Bit-0 corresponds
to I/O pin P0, bit-1 to P1, and so on all the way up to bit-
15, which corresponds to I/O pin P15.

Each bit in the outs register, can be used to set the output
value for a given I/O pin to either 5 V or 0 V. When a bit
value in the outs register is a 1, the output for the
corresponding I/O pin is 5 V. When the bit value is 0, the
output is 0 V.

Since a BASIC Stamp I/O pin can’t be an input and an output at the same time, the direction of each I/O pin is
set by the dirs register. An I/O pin is set to be either input or output, depending on the value in the dirs
register.

Program Listing 3.1 is designed to test the whiskers to make sure they are functioning properly. It checks and
displays the state of the BASIC Stamp I/O pins connected to the whiskers. All I/O pins default to input every
time a PBASIC program starts. This means that the I/O pins connected to the whiskers will function as inputs
automatically. As an input, an I/O pin connected to a whisker will cause its bit in the ins register to display 1
if the voltage is 5 V (whisker not pressed) and 0 if the voltage is 0 V (whisker pressed). The Debug Terminal can
be used to display these values.

q Enter and run Program Listing 3.1

q This program makes use of the Debug Terminal, so leave the serial cable connected to the BOE while

Program Listing 3.1 is running.

Figure 3.5: Ram Map from Memory Map Window.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 79

' Robotics! v1.5, Program Listing 3.1: Testing the Whiskers.
' {$Stamp bs2} ' Stamp Directive.

loop:
 debug home, "P6 = ", bin1 in6, " P4 = ", bin1 in4
 pause 50
goto loop

q Note the values displayed in the Debug Terminal; it should display that both P6 and P4 are equal to 1.

q Check Figure 3.3 so you know which whisker is the “left whisker” and which whisker is the “right whisker”.

q Press the right whisker so that it touches the three-pin header on the right, and note the values displayed

in the Debug Terminal again. It should now read: P6 = 1 P4 = 0.

q Press the left whisker into the left three-pin header, and note the value displayed in the Debug Terminal

again. This time it should read: P6 = 0 P4 = 1.

q Press both whiskers against both three-pin headers. Now it should read P6 = 0 P4 = 0.

If the whiskers passed all these tests, you’re ready to move on; otherwise, check your program and circuit for
errors.

How the Testing the Whiskers Program Works

The only new elements in Program Listing 3.2 are in6 and in4. Instead of word or byte variables, these are
bit variables. These bit variables are special because each stores the input value of a particular I/O pin. The
variable in4 refers to bit-4 in the ins register and in6 refers to bit-6. When I/O pin P4 on the BASIC Stamp
detects 0 V, the value of in4 is 0. When I/O pin P4 detects 5 V, the value of in4 is 1. The in6 variable works
the same way, except that it is monitoring P6 instead of P4.

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 8 08 0 • Robotics! Version 1.5

Your Turn

Assume that you may have to test the whiskers at some later time away from a computer. Since the debug
terminal won’t be available, what can you do? One solution would be to program the BASIC Stamp so that it
sends an output signal that corresponds to the input signal it’s receiving. One way of doing this would be with
a pair of LED circuits and a program that turns the LEDs on and off based on the whisker inputs. Figure 3.6
shows the parts of an LED circuit along with their schematic symbols.

Extra Parts
(2) Red LEDs
(2) 470 Ω resistors

470 Ω

LED

1

2
1 2

1
2

2

1 Short
leg

Flat
spot

 Figure 3.6 Extra parts for testing the whiskers.

FYI

LED stands for light emitting diode. The terminal labeled 1 in figure 3.6 is the LED’s
cathode, and the terminal labeled 2 is the LED’s anode. You can usually figure out
which of the LED’s two wire leads is connected to the cathode because it’s shorter.

ü
TIP

Just above where the wire leads come out of LED’s plastic case, the outer rim looks
round, but if you look carefully, there’s a small area that’s been milled flat. The lead
that comes out of the plastic case closest to the milled flat spot is the cathode. If the
LED’s leads have been cut to the same length, look for the flat spot to figure out
which lead connects to the LED’s cathode.

q Construct the circuit shown in Figure 3.7.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 81

P9

P10

470 Ω 470 Ω

Vdd Vdd

LED LED

X3
Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Red
Black

Board of Education
www.stampsinclass.com

(916) 624-8333

(c) 2000

Rev BX4 X5

15 14 13 12

To
Servos

Figure 3.7 (a): add this LED circuit, (b) so the Whiskers circuit looks like this when you’re done.

q Add these commands to the beginning of Program Listing 3.1:

output 9
output 10

These commands change the direction of P9 and P10 from input to output. Now instead of listening for
signals, they will be ready to send signals.

q Add these two commands immediately after the debug command in Program Listing 3.1:

out9 = in4
out10 = in6

Left
Whisker

Right
Whisker

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 8 28 2 • Robotics! Version 1.5

These statements set the output values of P9 and P10 equal to the input values at in4 and in6 respectively. If
in4 = 1, out9 is set to 1. This means that when in4 sees 5 V, out9 sends 5 V. If in4 is 0, which means it
detects 0 V, then out9 will also be 0, sending 0 V.

q Run your modified version of Program Listing 3.1, and test the whiskers using the LEDs to indicate that

the BASIC Stamp has detected a whisker being pressed.

Activity #2: Navigation With Whiskers

In Activity #1, the BASIC Stamp was programmed to detect whether or not a given whisker was pressed. In
this activity, the BASIC stamp will be programmed to use this information to guide the Boe-Bot. When the
Boe-Bot is rolling along and a whisker is pressed, it means the Boe-Bot bumped into something. A navigation
program needs to take this input, decide what it means, and call a navigational routine to back up from the
obstacle and go in a different direction.

Programming the Boe-Bot to Navigate Based on Whisker Inputs

Program Listing 3.2 is called a roaming program. The program makes the Boe-Bot go forward until it
encounters an obstacle. In this case, the Boe-Bot knows when it encounters an obstacle by bumping into it
with one or both of its whiskers. As soon as the obstacle is detected by the whiskers, navigational routines
and subroutines developed in Chapter 2 are used to make the Boe-Bot back up and turn. Then, the Boe-Bot
resumes forward motion until it bumps into another obstacle.

When a whisker is pressed, due to an obstacle, the normally open switch closes. I/O pins P6 and P4 are set to
input and used to monitor the states of the whiskers. The two whiskers may be in one of four states:

(1) Both high – no objects detected
(2) Left low, right high – object detected on the left
(3) Right low, left high – object detected on the right
(4) Both low – indicates a head-on collision with a wide object such as a wall

Program Listing 3.2 shows an example of how the states of the whiskers can be used to select the appropriate
Boe-Bot navigation routine. For example, state 1 means the Boe-Bot can continue forward. State 2 means
that the Boe-Bot should back up, then turn right. State 3 means the Boe-Bot should back up and turn left,
and state 4 would be a good time to back up and make a U-turn.

q Run Program Listing 3.2, and see how the Boe-Bot behaves when it bumps into a wall.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 83

' Robotics! v1.5, Program Listing 3.2: Roaming with Whiskers.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 pulse_count var byte ' For...next loop counter.

'----- Initialization ------------

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Start/restart signal.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:

 check_whiskers: ' Check each whisker.

 if in6 = 0 and in4 = 0 then u_turn ' Backwards if both switches close.
 if in6 = 0 then right_turn ' Right if left switch closes.
 if in4 = 0 then left_turn ' Left if right switch closes.

 forward: ' If no detect, one forward pulse.
 pulsout 12,500
 pulsout 13,1000
 pause 20

goto main ' Check again.

'----- Navigation Routines -------

 left_turn: ' Left turn routine.
 gosub backward ' Call Backward: before turning.
 for pulse_count = 0 to 35
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 goto main

 right_turn: ' Right turn routine.
 gosub backward ' Call Backward: before turning.
 for pulse_count = 0 to 35
 pulsout 12, 1000
 pulsout 13, 1000

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 8 48 4 • Robotics! Version 1.5

 pause 20
 next
 goto main

 u_turn: ' U-turn routine.
 gosub backward ' Call Backward: before turning.
 for pulse_count = 0 to 70
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 goto main

'----- Navigation Subroutine -----

 backward: ' Used by each navigation routine .
 for pulse_count = 0 to 70
 pulsout 12, 1000
 pulsout 13, 500
 pause 20
 next
 return

The mechanical design of the whiskers is by no means foolproof. Table 3.1 lists common problems you may
encounter with some suggested solutions.

Table 3.1: Whisker Troubleshooting

Problem Try This
Boe-Bot backs up too far/not
far enough.

Adjust the for. . . next arguments in the program listing. They may
be increased or decreased to increase or decrease how far the Boe-Bot
rotates when it turns/backs up.

Boe-Bot drives up side of wall
because whiskers didn’t catch
hold of an object.

Increase the resistance of a whisker against the surface of an object by
bending whiskers in a different angle. Alternatively, try dipping the
whiskers in a coating material such as rubber cement.

Dead-center object isn’t
detected by whiskers.

Bend whiskers inward.

Switches don’t appear to work
properly.

Repeat Activity #1.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 85

How Roaming with Whiskers Works

The if...then statements in the main routine first check the whiskers for any states that require attention.
If both whiskers are pressed, the u_turn routine is called. If just the left whisker is pressed, it contacts the
post connected to P6, and the right_turn routine is called. If the right whisker is pressed, it contacts the
post connected to P4, and the left_turn routine is called.

main:

 check_whiskers:
 if in6 = 0 and in4 = 0 then u_turn
 if in6 = 0 then right_turn
 if in4 = 0 then left_turn

If none of the whiskers are pressed, the default action is to execute a modified version of the forward
routine. The forward routine has been modified so that it only delivers a single pulse before looping back to
check the whiskers. The key to understanding how the main routine is structured is that it checks the
whiskers between every pulse sent to the servos when the Boe-Bot is moving forward. Notice that the
pulsout and pause statements in the forward routine are not nested in a for...next loop. Just a single
pulse is sent to the servos. After the pulse, the program goes to the main: label, and checks the whiskers
again. This process happens quickly enough that it’s not even important to reduce the pause period in the
forward routine.

 forward:

 pulsout 12,500
 pulsout 13,1000
 pause 20

 goto main

When the whiskers detect an object, the Boe-Bot is already too close to the object. To get around the object,
the Boe-Bot has to back up first. This is easy to fix with a subroutine. For example, the left_turn routine
shown below calls the backward subroutine using the command gosub backward. The great thing about
subroutines is that they return program control to the line immediately following the subroutine call. So,
after backward is done, the for...next loop in the left_turn routine begins. Another useful feature of
having a backward subroutine is that it returns program control to the right place. If right_turn instead
of left_turn calls a subroutine labeled backward:, program control is returned to the right_turn
routine.

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 8 68 6 • Robotics! Version 1.5

left_turn:
 gosub backward
 for pulse_count = 0 to 35
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 goto main

The backward: subroutine is just a modified version of the backward: routine developed in Chapter #2,
Activity #2. Instead of ending with the goto main command, it ends with the return command. The
return command works well in this situation because it returns program control to whichever of the three
navigation routines called it.

 backward:
 for pulse_count = 0 to 70
 pulsout 12, 1000
 pulsout 13, 500
 pause 20
 next
 return

Your Turn

The for...next loop end arguments in the right_turn and left_turn routines can be adjusted for more
or less turn, and the backward routine can have its end value adjusted to back up less for navigation in tighter
spaces.

q Experiment with the for...next loop end argument values in navigation routines in Program Listing 3.2.

Activity #3: Looking at Multiple Inputs as Binary Numbers

Here is another way to look at States 1 through 4 discussed in Activity #2. Instead of viewing them as states,
view them as 2-bit binary numbers. For those of you unfamiliar with binary counting numbers, the binary
numbers 00, 01, 10, and 11 are equal to 0, 1, 2, and 3 in decimal. Table 3.2 shows how the whiskers can create
these four binary numbers.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 87

Table 3.2: Whisker States in Binary

Binary Value

of state
 Decimal Value

of State
Branch Action Based on Value of State

0000 0 in6 = 0 and in4 = 0 Both whiskers detect object, execute
u_turn

0001 1 in6 = 0 and in4 = 1 Left whisker detects object, execute
right_turn

0010 2 in6 = 1 and in4 = 0 Right whisker detects object, execute
left_turn

0011 3 in6 = 1 and in4 = 1 Neither whisker detects object, execute
forward

Reprogramming for Roaming with Whiskers

Program Listing 3.3 does the same thing as Program Listing 3.2. However, it processes the whisker inputs by
placing them in the lower two bits of a variable. This variable now stores a binary number that is then used by
a branch command to call the appropriate navigation routine.

' Robotics! v1.5, Program Listing 3.3: Roaming with Whiskers Again.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 pulse_count var byte ' For...next loop counter.
 state var nib

'----- Initialization ------------

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Signal program start/restart.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:

 check_whiskers:

 state.bit1 = in6 ' Create binary number by saving in6
 state.bit0 = in4 ' in state.bit1 & in4 in state.bit0.

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 8 88 8 • Robotics! Version 1.5

 ' Branch to a navigation routine based on the value of the state variable.
 branch state, [u_turn, right_turn, left_turn, forward]

 forward: ' Deliver a single forward pulse.
 pulsout 12,500
 pulsout 13,1000
 pause 20

 goto main

'----- Navigation Routines -------

 left_turn: ' Left turn routine.
 gosub backward ' Call backward: before turning.
 for pulse_count = 0 to 35
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 goto main

 right_turn: ' Right turn routine.
 gosub backward ' Call backward: before turning.
 for pulse_count = 0 to 35
 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
 next
 goto main

 u_turn: ' U-turn routine.
 gosub backward ' Call backward: before turning.
 for pulse_count = 0 to 70
 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
 next
 goto main

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 89

'----- Navigation Subroutine -----

 backward: ' Used by all navigation routines.
 for pulse_count = 0 to 70
 pulsout 12, 1000
 pulsout 13, 500
 pause 20
 next
 return

How Roaming with Whiskers Again Works

q Look up the branch command in Appendix C: PBASIC Quick Reference or in the BASIC Stamp Manual

before continuing.

A nibble (nib) variable named state is added to the declarations section of Program Listing 3.3. A nibble is
4-bits, and can store a number between 0 (binary 0000) and 15 (binary 1111). The lowest two bits of the
nibble are used to store the state of each whisker. Two bits can be used to count from 0 to 3 (four values).

declarations:
 pulse_count var byte
 state var nib

The main routine consists of two statements followed by a branch command. The first statement sets the
binary value of bit-1 in the state variable equal to the binary value from in6. The second sets the value of
bit-0 of the state variable equal to the value of in4.

main:

 check_whiskers: ' check each whisker
 state.bit1 = in6
 state.bit0 = in4

 branch state, [u_turn, right_turn, left_turn, forward]

Your Turn

q Insert this debug command just before the branch command in Program Listing 3.3.

debug home, “binary “, bin4 state, “ = decimal “, dec1 state

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 9 09 0 • Robotics! Version 1.5

q Set the Boe-Bot on something so that when the program runs, the wheels don’t touch the ground. This is
so you can leave the Boe-Bot plugged into the serial cable while the program runs.

q Run the program and observe the Debug Terminal output as you test the whiskers.

Activity #4: Artificial Intelligence and Deciding When You’re Stuck

You may have noticed that the Boe-Bot gets stuck in corners. As the Boe-Bot enters the corner, its whisker
touches the wall on the left, so it turns right. When the Boe-Bot moves forward again, its right whisker
bumps the wall on the right, so it turns left. Then it turns and bumps the left wall again, and the right wall
again, and so on, until somebody rescues it from its predicament.

Programming to Escape Corners

The corner problem can be fixed by adding a counter that tracks the transitions between states 1 and 2 in
Program Listing 3.3. Program Listing 3.4 below is a modified version of Program Listing 3.3 that detects and
counts the number of instances of one whisker detecting an obstacle immediately after the other.

' Robotics! v1.5, Program Listing 3.4: Escaping Corners.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations -------

 pulse_count var byte ' For...next loop counter.
 state var nib ' Stores whisker inputs as binary numbers.
 old_state var nib ' Stores state from previous pulse.
 counter var nib ' Counting variable for tracking events.

'----- Initialization -----

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Signal program is starting/restarting.
 low 12 ' Set P12 and 13 to output-low.
 low 13
 old_state = %0001 ' Initialize old_state.

'----- Main Routine -------

main:

 check_whiskers:

 state.bit1 = in6 ' Store whisker outputs in state.
 state.bit0 = in4

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 91

 ' Later in the program, a counter increments each time alternate whiskers are
 ' pressed. The if...then statement below tests to see if the same whisker was
 ' pressed twice in a row. If yes, then reset counter variable.

 if old_state <> state then no_reset ' If same whisker twice then reset.
 counter = 0 ' Reset counter.

 no_reset: ' Label for if...then to skip to.

 ' If old_state exclusive-or state is not binary-0011, then skip to
 ' the continue: label. Otherwise increment counter and decide if it's time
 ' to do a u-turn.

 if old_state ^ state <> %0011 then continue

 counter = counter +1
 old_state = state ' Save copy of state before update.
 if counter = 4 then u_turn

 ' Reset counter & branch based on value of state.

 continue:

 branch state, [u_turn, right_turn, left_turn, forward]

 forward:
 pulsout 12,500
 pulsout 13,1000
 pause 20

 goto main

'----- Navigation Routines -------

 left_turn: ' Left turn routine.
 gosub backward ' Call backward: before turning.
 for pulse_count = 0 to 35
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 goto main

 right_turn: ' Right turn routine.
 gosub backward ' Call backward: before turning.
 for pulse_count = 0 to 35

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 9 29 2 • Robotics! Version 1.5

 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
 next
 goto main

 u_turn: ' U-turn routine.
 gosub backward ' Call backward: before turning.
 for pulse_count = 0 to 70
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 counter = 0
 goto main

'----- Navigation Subroutine -----

 backward: ' Used by each navigation routine .
 for pulse_count = 0 to 70
 pulsout 12, 1000
 pulsout 13, 500
 pause 20
 next
 return

How Escaping Corners Works

Nibble variables named old_state and counter are added to the declarations section for keeping a
running history on turns. Old_state tracks the previous state after the state variable is updated with the
current whisker values. Counter keeps track of how many times in a row state transitions between one
and two and back to one again.

declarations:
 pulse_count var byte
 state var nib
 old_state var nib
 counter var nib

The check_whiskers routine is to designed check the whiskers as before, but code also has been added that
detects the “stuck in a corner” condition. This condition is indicated by four right-left-right (or left-right-left)
transitions. Before updating the state variable with new whisker values, the statement old_state =
state saves a copy of the previous state for comparison. Then the state variable is updated with the
current whisker readings, just as in Program Listing 3.3.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 93

 check_whiskers:

 old_state = state

 state.bit1 = in6
 state.bit0 = in4

 The stuck in a corner condition rests on the assumption that alternate whiskers
are pressed several consecutive times. However, if the Boe-Bot encounters an
obstacle with the same whisker twice in a row, it must not be stuck in a corner. If
this happens, the program should start counting from zero again. The command if
old_state <> state then no_reset tests for the same whisker being
pressed twice in a row. If a whisker has not been pressed twice in a row, the
program skips to the no_reset: label; otherwise, it resets the counter.

 if old_state <> state then no_reset
 counter = 0

 no_reset:

Next, the program tests for whether or not an alternate whisker has been pressed
by making use of the exclusive-or (̂) operator. If the old_state exclusive-or
the new state is not equal to binary 0011, it means that the opposite sensor was
not touched. In this case, the if...then statement makes the program skip to
the continue: label.

 if old_state ^ state <> %0011 then continue

On the other hand, if the statement is not true (if old_state XOR state is equal
to binary 0011), then the counter variable is incremented. Another if...then
tests to see if counter has reached 4. If it has, the u_turn routine is executed.
If not the program simply branches to the appropriate maneuver based on the
value of state.

check_counter:
 counter = counter +1
 if counter = 4 then u_turn

continue:
 branch state, [u_turn, right_turn, left_turn, forward]

Exclusive-or

The term exclusive-or
(XOR) refers to one of the
operations in Boolean
Algebra, which is used on
binary numbers and
expressions. Here’s how
XOR works:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The PBASIC operator for
XOR is the ^ character.
When you have an
expression such as
variable_1 ^ variable 2, it
means that each bit in
variable_1 gets exclusive-
orred with the
corresponding bit in
variable_2. In other words,
bit-0 of variable_1 gets
exclusive-orred with bit_0
of vriable_2. Bit-1 of
variable_1 gets exclusive-
orred with bit-1 of
variable_2 and so on.

The NOT operator is
another Boolean operator
introduced in this chapter’s
Questions and Projects
section. The BASIC Stamp
Manual introduces more
Boolean operators in the
Binary Operators section.
Boolean operators are
further discussed in the
section that explains the
if...then command.

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 9 49 4 • Robotics! Version 1.5

When the count of successive whisker detections on opposite whiskers reaches 4, the u_turn routine is
called. The u_turn routine has been modified so that it resets the counter any time it gets called. That way,
the Boe-Bot can start counting from 0 each time it encounters a corner.

 u_turn:
 gosub backward ' Call backward: before turning.
 for pulse_count = 0 to 75
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 counter = 0
 goto main

Your Turn

One of the if...then statements in Program Listing 3.4 checks to see if counter has reached 4. Try reducing
and increasing the condition argument of this if...then statement and note the effect. Also note if
reducing the value has any effect on normal roaming. Reducing it to 0, 1, or 2 could cause interesting
problems.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 95

In this chapter, instead of navigating from a pre-programmed list, the
Boe-Bot was programmed to navigate based on sensory inputs. In this
case, the sensory inputs were whiskers. The BASIC Stamp was
programmed to test these whisker sensors and display the test results
using two different media, the Debug Terminal and LEDs.

When properly wired, these switches can show one voltage (5 V) at the switch’s contact point when it’s open,
and a different voltage (0 V) when it’s closed. Voltages of 5 and 0 V are transistor-transistor logic (TTL) levels,
and the BASIC Stamp’s input registers interpret these levels as “1” and “0,” respectively.

PBASIC programs were developed to make the BASIC Stamp check the whiskers between each servo pulse.
Based on the state of the whiskers, the programs’ main: routines either made the Boe-Bot continue forward,
or called navigational routines developed in the previous chapter to guide the Boe-Bot away from obstacles.
As an example of artificial intelligence, a program was developed that enabled the Boe-Bot to detect when it
got stuck in a corner. In this case, XOR Boolean logic expression and a counter simplified the task.

Real World Example

Automated sensors are all around you. When you go to a grocery or convenience store, sensors are often
responsible for opening the door for you. Microcontrollers scan keypads in a fashion similar to the way the
BASIC Stamp scans the whiskers to detect whether or not they have been pressed. The information is
processed and results as an output. In the case of a door opener, the result is a servo- or motor-controlled
door being opened.

Robotic machinery of many shapes and sizes also relies on a variety of tactile switches wired similarly to the
whiskers. Robotic arms sometimes use these switches to detect when they’ve encountered the object they
are programmed to pick up and place elsewhere. Factories use these switches to count objects on a
production line, and also for aligning objects for industrial processes. In all these instances, the switches
provide inputs that dictate some other form of programmed output. Be it a calculator, robot or a production
line, the switch input is electronically monitored. Based on the state of the switches, the calculator display
updates, the robot arm grabs the object, or the factory production line reacts with motors or servos to guide
the product in a pre-programmed fashion.

Boe-Bot Application

This chapter introduced input-based Boe-Bot navigation. The next three chapters will focus on using
different types of sensors to give the Boe-Bot vision. Both vision and touch open up a lots of opportunities
for the Boe-Bot to navigate in increasingly complex environments.

Summary and
Applications

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 9 69 6 • Robotics! Version 1.5

Questions and Projects

Questions

1. What kind of electrical connection is a whisker?

2. What are the three types of BASIC Stamp I/O registers?

3. If an I/O pin is set to output, what register does this effect?

4. When a whisker is pressed, what voltage occurs at the I/O pin monitoring it? What binary value will
occur in the input register? If I/O pin P8 is used to monitor the input pin, what value does in8 have
when a whisker is pressed, and what value does it have when a whisker is not pressed?

5. What direction does an I/O pin have to be set to make an LED circuit function?

6. Which whisker is in6 connected to? How about in4?

7. What command can you use to replace multiple if...then statements?

8. What are the three PBASIC programming elements that were used in this chapter to track events and

make decisions based on those events?

Exercises

1. Assume that Program Listing 3.1 takes 1 ms to display each character and another ms to execute the

loop. What is the sampling rate at which the BASIC Stamp checks each whisker?

2. In Program Listing 3.2, determine the sampling rate when the Boe-Bot rolls forward. Also determine
the sampling rate while the Boe-Bot is executing maneuvers. Hint: the second portion of this
exercise is a “trick question.”

3. Assume that the label of the left_turn routine was changed to turn_left. Write down any

necessary changes to the relevant commands in Program Listings 3.2, 3.3, and 3.4.

Chapter #3: Tactile Navigation with Whiskers

Robotics! Version 1.5 • P a g e P a g e 97

4. Describe the debug display after making the modification in the Your Turn section of Activity #3.

Projects

1. The XOR operator was introduced as a Boolean operator in this chapter. The PBASIC NOT operator is
another Boolean operator denoted by the tilde character (~). You can type it on most computer
keyboards by pressing Shift and the key just below the Esc key. Here’s how NOT works:

NOT 0 = 1
NOT 1 = 0

In the Your Turn section of Activity #1, you used LEDs to display the states of the whiskers. When you
did so, the LEDs turned on when the whiskers were pressed. Use the PBASIC NOT operator (~) to
make it so that each LED is on when a whisker is not pressed. The LED should then turn off when the
whisker is pressed.

Modify the program further so that the LED flashes at 2 Hz when the whisker is pressed. Hint, you
will need to use a loop and pause statements. Try three more modifications to Program Listing 3.1,
and run the program between each modification. Make it so that the LED flashes at 4 Hz, 10 Hz, and
100 Hz when the whisker is pressed.

2. Modify Program Listing 3.2 so that the Boe-Bot moves backward slowly while both whiskers are
pressed. Otherwise, it stays still. Modify the program further so that the Boe-Bot rotates
counterclockwise when the left whisker is pressed and clockwise then the right whisker is pressed.
When the program is finished, fine tune the speed response so that it appears that you are pushing
the Boe-Bot around by its whiskers.

3. Challenge: Modify Program Listing 3.4 so that the Boe-Bot travels in a circular path. Modify it so that

if you tap the inside whisker, the circular path will become 5 cm. narrower in diameter. Also make it
so that if you tap the whisker on the outside of the Boe-Bot’s circular path, the diameter will
increase by 5 cm.

When you’ve got whisker control over the diameter of the Boe-Bot’s circle, program the Boe-Bot to
remember this diameter, even after the power is reset. The write command can be used to save
data to EEPROM. EEPROM data is called non-volatile. Whereas the BASIC stamp’s RAM is erased with
each reset (volatile), the EEPROM can save the data for use the next time the BASIC Stamp gets
power (non-volatile). From the PBASIC quick reference, the format for the write command is:

Chapter #3: Tactile Navigation with Whiskers

P a g e P a g e 9 89 8 • Robotics! Version 1.5

 write address, data

Since we aren’t using any data statements in this program, EEPROM address 0 can be used to record the
value of the PBASIC parameter that determined the circle’s diameter.

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 99

Is Your Boe-Bot a Photophile or a Photophobe?

The photoresistors in your kit can be used to make your Boe-
Bot detect variations in light level. With some programming,
your Boe-Bot can be transformed into a photophile (a creature
attracted to light), or a photophobe (a creature that tries to
avoid light).

To sense the presence and intensity of light you’ll build a couple of photoresistor circuits on your Boe-Bot. A
photoresistor is a light-dependent resistor (LDR) that covers the spectral sensitivity similar to that of the
human eye. The active elements of these photoresistors are made of Cadmium Sulfide (CdS). Light enters
into the semiconductor layer applied to a ceramic substrate and produces free charge carriers. A defined
electrical resistance is produced that is inversely proportional to the illumination intensity. In other words,
darkness produces high resistance, and high illumination produces very small amounts of resistance.

The specific photoresistors included in the Boe-Bot kit are EG&G Vactec (#VT935G). If you need additional
photoresistors they are available from Parallax as well as from many electronic component suppliers. See
Appendix A: Boe-Bot Parts Lists and Sources. The specifications of these photoresistors are shown in Figure
4.1:

Figure 4.1: EG&G Vactec
Photoresistor Specifications

Illuminance is a scientific name for the measurement of incident light. The unit of measurement of
illuminance is commonly the "foot-candle" in the English system and the "lux" in the metric system. While
using the photoresistors we won't be concerned about lux levels, just whether or not illuminance is higher or
lower in certain directions. The Boe-Bot can be programmed to use the relative light intensity information to
make navigation decisions. For more information about light measurement with a microcontroller, take a look
at Earth Measurements Experiment #4, Light on Earth and Data Logging.

Chapter #4: Light
Sensitive
Navigation with
Photoresistors

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 0 01 0 0 • Robotics! Version 1.5

Activity #1: Building and Testing Photosensitive Eyes

Parts

Figure 4.2 shows the new parts introduced
in this experiment along with their
schematic symbols. Below is a list of the
parts you’ll need. Both parts types of parts
are nonpolar, meaning that terminals 1 and
2 as shown may be swapped without
affecting the circuit.

(1) Piezoelectric speaker
(2) Photoresistors
(2) 0.1 µF capacitors
(2) 0.01 µF capacitors
(2) 220 Ω resistors
(misc.) jumper wires

1

2

1

2

1
2

.1 µF

2

1

1 2

.01 µF

2

1

 Figure 4.2: Photoresistor and capacitor circuit symbols and parts.

Build It!

Figure 4.3 shows (a) the resistor/capacitor (RC) circuit for each photoresistor and (b) a breadboard example
of the circuit. A photoresistor is an analog device. Its value varies continuously as illuminance, another analog
value, varies. The photoresistor’s resistance is very low when it’s light-sensitive surface is placed in direct
sunlight. As the light level decreases, the photoresistor’s resistance increases. In complete darkness, the
photoresistor’s value can increase to more than 1 MΩ. Even through the photoresistor is analog, its response
to light is nonlinear. This means if the input source (illuminance) varies at a constant rate, the photoresistor’s
value does not necessarily vary at a constant rate.

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 101

P3

P5

220 Ω

220 Ω

.01 µF

Vdd

Vss

Vdd

Vss

P2

Vss

Piezo

.01 µF

X3
Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Rev B

Red

X4 X5

15 14 13 12

Black

To
Servos

(a) (b)
Figure 4.3: (a) Two photoresistor RC circuits for measurement of resistance that varies with light, and (b) breadboard
example of the circuit.

ü
TIP

Remember: The servo circuits are not shown in the schematics any more, but they are
still shown in the breadboard diagrams. All activities from Chapter #2 onward are
designed so that the servos’ headers can remain plugged into servo ports 12 and 13 at
all times.

Programming to Measure the Resistance

The circuit in Figure 4.3 (a) was designed for use with the PBASIC rctime command. This command can be
used with an RC circuit where one value, either R or C, varies while the other remains constant. The rctime
command lends itself to measuring the variable values because it takes advantage of a time varying property
of RC circuits. The time it takes for the voltage on an RC circuit to change voltage depends on R × C, the RC
time constant. The RC time constant is often denoted by the Greek letter Tau (τ).

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 0 21 0 2 • Robotics! Version 1.5

For one of the RC circuits shown in Figure 4.3 (a), the first step in setting up the rctime measurement is
charging the lower plate of the capacitor to 5 V. Setting the I/O pin connected to the lower capacitor plate by
the 220 Ω resistor high for a few ms takes care of this. Next, the rctime command can be used to take the
measurement of the time it takes the lower plate to discharge from 5 to 1.4 V. Why 1.4 V? Because that’s the
BASIC Stamp I/O pin’s threshold voltage. When the voltage at an I/O pin set to input is above 1.4 V, the value
in the input register bit connected to that I/O pin is “1.” When the voltage is below 1.4 V, the value in the input
register bit is “0.”

The rctime command for the circuit shown in Figure 4.3 measures how long it takes for the voltage at the
lower plate of the capacitor to fall from 5 to 1.4 V. This time varies according to the formula:

)1.4(sR1027.1t

s1001.0Rln(3.57)t

s)
 V1.4

 V5
ln(

1001.0R
t

)
V
V

ln(
CR

t

8

6

6

final

initial

××=

×××=

=
××

=
×

−

−

−

Equation 4.1 indicates that the time it takes the voltage at the lower plate of the capacitor in one of the
Figure 4.3 (a) RC circuits to drop from 5 to 1.4 V is directly proportional to the photoresistor’s resistance.
Since this resistance varies with illuminance (exposure to varying levels of light), so does the time. By
measuring this time, relative light exposure can be inferred.

The rctime command changes the I/O pin from output to input. As soon as the I/O pin becomes an input, the
voltage at the lower plate of the capacitor starts to fall according to the time equation just discussed. The
BASIC Stamp starts counting in 2 µs increments until the voltage at the capacitor’s lower plate drops below
1.4 V.

ü
TIP

For Best Results: Eliminate direct sunlight; it’s too bright for the photoresistor circuits.

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 103

q Run Program Listing 4.1. It demonstrates how to use the rctime command to read the photoresistors.

q This program makes use of the Debug Terminal, so leave the serial cable connected to the BOE while
Program Listing 4.1 is running.

' Robotics! v1.5, Program Listing 4.1: Photoresistor rctime Display
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 left_photo var word ' For storing measured RC times of
 right_photo var word ' the left & right photoresistors.

'----- Initialization ------------

 debug cls ' Open and clear a Debug Terminal.

'----- Main Routine --------------

main:

 ' Measure RC time for right photoresistor.

 high 3 ' Set P3 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 3,1,right_photo ' Measure RC time on P3.

 ' Measure RC time for left photoresistor.

 high 5 ' Set P5 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 5,1,left_photo ' Measure RC time on P5.

 ' Display RC time measurements using Debug Terminal.

 debug home, "L ", dec5 left_photo, " R ", dec5 right_photo

goto main

How Photoresistor Display Works

Two word variables, left_photo and right_photo are declared for storing the RC time values of the left
and right photoresistors. The main routine then measures and displays the RC times for each RC circuit. The

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 0 41 0 4 • Robotics! Version 1.5

code for reading the right RC circuit is shown below. First, the I/O pin P3 is set to output-high. Next, a 3 ms
pause allows enough time for the capacitor to discharge. After 3 ms, the lower plate of the capacitor is close
enough to 5 V and is ready for the rctime measurement. The rctime command measures the RC time on I/O
pin P3, with a beginning state of “1” (5 V), and stores the result in the right_photo variable. Remember, the
value stored in right_photo is a number. This number tells how many 2 µs increments passed before the
voltage at the lower plate of the capacitor passed below the I/O pin’s 1.4 V threshold.

 high 3
 pause 3
 rctime 3,1,right_photo

Your Turn

q Try replacing one of the 0.01 µF capacitors with a 0.1 µF capacitor. Which circuit fares better in bright

light, the one with the larger (0.1 µF) or the one with the smaller (0.01 µF) capacitor? What is the effect
as the surroundings get darker and darker? Do you notice any symptoms that would indicate that one or
the other capacitor would work better in a darker environment?

q Make sure to restore your circuit to its original state before moving on to the next activity.

Activity #2: A Light Compass

If you focus a flashlight beam in front of the Boe-Bot, the circuit and programming techniques just discussed
can be used to make the Boe-Bot turn so that it’s pointing at the flashlight beam. Make sure the
photoresistors are pointed so that they can make a light comparison. Aside from each being pointed 45°
outward from the center-line of the Boe-Bot, they also should be oriented so they are pointing 45°
downward from horizontal. In other words, point the faces of the photoresistors down toward the table top.
Then, use a bright flashlight to make the Boe-Bot track the direction of the light.

Programming the Boe-Bot to Point at the Light

Getting the Boe-Bot to track a light source is a matter of programming it to compare the value measured at
each photoresistor. Remember that as the light gets dimmer, the photoresistor’s value increases. So, if the
photoresistor value on the right is larger than that of the photoresistor on the left, it means it’s brighter on
the left. Given this situation, the Boe-Bot should turn left. On the other hand, if the rctime of the
photoresistor on the left is larger than that of the photoresistor on the right, the right side is brighter and the
Boe-Bot should turn right.

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 105

To keep the Boe-Bot from changing directions too often, a parameter for deadband is introduced. Deadband
is a range of values wherein the system makes no attempt at correction. If the numbers go above or below
the deadband, then the system corrects accordingly. The most convenient way to measure for deadband is to
subtract the left rctime from the right rctime, or visa versa, then take the absolute value. If this absolute
value is within the deadband limits, then do nothing; if otherwise, program an appropriate adjustment.

q Enter and run Program Listing 4.2.

q Shine a bright flashlight in front of the Boe-Bot. When you move the flashlight, the Boe-Bot should

rotate so that it’s pointing at the flashlight beam.

q Instead of using a flashlight, use your hand to cast a shadow over one of the photoresistors. The Boe-Bot

should rotate away from the shadow.

' Robotics! v1.5, Program Listing 4.2: Light Compass
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 left_photo var word ' For storing measured RC times of
 right_photo var word ' the left & right photoresistors.

'----- Initialization ------------

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Declare a variable for counting.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:

 ' Measure RC time for right photoresistor.

 high 3 ' Set P3 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 3,1,right_photo ' Measure RC time on P3.

 ' Measure RC time for left photoresistor.

 high 5 ' Set P5 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 5,1,left_photo ' Measure RC time on P5.

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 0 61 0 6 • Robotics! Version 1.5

 ' Take the difference between right_photo and left_photo, then decide what to do.

 if abs(left_photo-right_photo) < 2 then main
 if left_photo > right_photo then right_pulse
 if left_photo < right_photo then left_pulse

'----- Navigation Routines -------

left_pulse: ' Apply one pulse to left then
 pulsout 12, 500
 pulsout 13, 500
 pause 20
goto main ' go back to main routine.

right_pulse: ' Apply one pulse to right then

 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
goto main ' go back to main routine.

How the Light Compass Works

Program Listing 4.2 takes RC time measurements and first checks to see if the difference between the values
returned by the rctime commands fall in the deadband using the command:

if abs(left_photo - right_photo) < 2 then main

If the difference between RC times is within the deadband, the program jumps to the main: label. If the
measured difference in RC times is not within the deadband, two if...then statements decide which
routine to call, left_pulse or right_pulse.

 if left_photo > right_photo then right_pulse
 if left_photo < right_photo then left_pulse

The left_pulse routine is shown below. Note that the pulsout commands and the pause command are
not nested within a for...next loop. Instead, just one single pulse with a slightly smaller than usual pause
is delivered, then control is returned to the main routine. This allows the program to check and update the
photoresistor values between each servo pulse. Note that the pause value is not 20 ms. This is because each
rctime command takes a certain amount of time, which can be subtracted from the necessary pause

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 107

period. The average of the combined pauses and RC times was 10 ms for the lighting conditions used in this
example. Your lighting conditions are likely to be different.

 left_pulse:
 pulsout 12, 500
 pulsout 13, 500
 pause 10
 goto main

Your Turn

In a darker area, not only will the photoresistor values be larger, so will the difference between them. You
may have to increase the deadband in low ambient light to detune the Boe-Bot to small and changing
variations in light. The lower the light levels, the less you need the pause statements. If the Boe-Bot’s
performance starts to decrease, it’s probably because the time between pulses has exceeded 40 ms. The first
line of defense for this problem is to reduce the pause period in each subroutine to zero. The second line
of defense is to check photoresistors during alternate pulses. That way, after the first pulse, the right
photoresistor could be checked. Then, after the second pulse, the left photoresistor could be checked. You
can try your hand at developing code that does this in this chapter’s Projects section.

The deadband value is currently set to “2” in the expression:

 if abs(left_photo-right_photo) < 2 then main

q Experiment with different ambient light levels and their effect on deadband by trying this experiment in
lighter and darker areas. In lighter areas, the deadband value can be made smaller, even zero. In darker
areas, the deadband value should be increased.

q Swap the conditions in the second and third if...then statement in Program Listing 4.2. Then re-run

the program. Now your Boe-Bot points away from the light.

Activity #3: Follow the Light!

Simply by adding some forward motion to your Boe-Bot, you can turn it into a light-seeking robot, a
photophile. An interesting experiment to try is to program the Boe-Bot to move forward and seek out light.
Then, take it into a dark room with the door open to a brighter room. Assuming there are no obstacles in its
way, the Boe-Bot will make its way to the door and exit the dark room.

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 0 81 0 8 • Robotics! Version 1.5

Programming for Light Following

Programming the Boe-Bot to follow light requires that only a few modifications to Program Listing 4.2 be
made. The main change is that measurements within the deadband resulted in no motion in Program Listing
4.2. In Program Listing 4.3, when the difference between RC times falls within the deadband, it results in
forward motion. Let’s see how it works.

' Robotics! v1.5, Program Listing 4.3: Light Follower
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 left_photo var word ' For storing measured RC times of
 right_photo var word ' the left & right photoresistors.

'----- Initialization ------------

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Program start/restart signal.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:

 ' Measure RC time for right photoresistor.

 high 3 ' Set P3 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 3,1,right_photo ' Measure RC time on P3.

 ' Measure RC time for left photoresistor.

 high 5 ' Set P5 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 5,1,left_photo ' Measure RC time on P5.

 ' Check if difference between RC times is within the deadband, 2 in this case.
 ' If yes, then forward. If no then skip to check_dir subroutine.

 if abs(left_photo-right_photo) > 2 then check_dir

 forward_pulse:
 pulsout 12, 500

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 109

 pulsout 13, 1000
 pause 20
 goto main

 ' Jump to either right_turn or left_turn depending on which RC time is larger.

 check_dir:
 if left_photo > right_photo then right_pulse
 if left_photo < right_photo then left_pulse

'----- Navigation Routines -------

left_pulse: ' Apply one pulse to left then
 pulsout 12, 500
 pulsout 13, 500
 pause 20
goto main ' go back to main routine.

right_pulse: ' Apply one pulse to right then

 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
goto main ' go back to main routine.

How the Light Follower Program Works

As in the previous program, the first if...then statement tests for a difference in RC time measurements
within the deadband. This statement has been modified so that it skips the forward_pulse routine if the
difference between RC times falls outside the deadband. On the other hand, if the difference in RC times is
within the deadband, the forward pulse is executed. After the forward pulse, the program is directed back to
main and the RC times are checked again.

 if abs(left_photo-right_photo) > 2 then check_dir

 forward_pulse:
 pulsout 12, 500
 pulsout 13, 1000
 pause 20
 goto main

If the difference between RC times is not within the deadband, the program skips to the check_dir label.
The if...then statements following the check_dir label are used to decide whether to apply a pulse to the
left or a pulse to the right depending on the inequality of the right_photo and left_photo values. In this

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 1 01 1 0 • Robotics! Version 1.5

way, the program either applies a single forward pulse or a single turn pulse each time the photoresistors are
checked.

 check_dir:
 if left_photo > right_photo then right_pulse
 if left_photo < right_photo then left_pulse

Your Turn

q Repeat the previous Your Turn exercise. You can now lead your Boe-Bot around with a flashlight.

q Instead of pointing the photoresistors at the surface directly in front of the Boe-Bot, point them upward

and outward as shown in Figure 4.3 on Page 108. With the photoresistors adjusted this way, the Boe-Bot
will roam on the floor and try to always find the brightest place.

Depending on the luminance gradient, you may have to increase the deadband to smooth out the Boe-Bot’s
light roaming. Alternatively, the deadband may need to be decreased to make it more responsive to seeking
out the brighter areas.

Activity #4: Line Following

If the Boe-Bot can be programmed to follow a flashlight beam focused in front of it, why can’t it follow a
white stripe on a black background? The answer is, there’s no good reason. The Boe-Bot can follow a white
stripe on a black background, and it’s a project in this chapter’s Projects section. By the same token, the Boe-
Bot should be able to follow a black stripe on a white background. Regardless of the color of the stripe, this
activity is generically referred to as “line following.”

The recommended width for the black stripe is about 5 cm. Either construction paper or electrical tape
works fine. With some calibration along with controlled lighting conditions, the Boe-Bot is a very faithful
stripe follower.

q Shadows and bright lights can be misleading, so try to keep the lighting as uniform as possible. For

example, overhead fluorescent lights with no light from windows will work well.

q Also, make sure to bend the photoresistors as far over the front of the Boe-Bot as possible. In other

words, readjust the photoresistors from flashlight beam following.

Programming for Line Following

By changing one value and three parameters from the previous example program, the Boe-Bot can now
follow bold, black stripes on a white background. Program Listing 4.4 demonstrates this. In the comments at

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 111

the beginning of the program, data from tests performed using Program Listing 4.1 are shown. The white
rctime readings were taken while the photoresistors were looking at a white surface in front of the Boe-Bot.
The black rctime readings were taken while the photoresistors were looking at a black surface. The average
difference between the black and white readings is 77 in this example. The average can go as low as 45, and
the example should still work without a hitch. When the difference is smaller, the deadband value will have to
be decreased. When the difference is larger, the deadband will have to be increased for better performance.

q Test the photoresistors using Program Listing 4.1. Use the information gathered to guess at a deadband

value for stripe following.

q Adjust the deadband value to your predictions, then run your modified version of Program Listing 4.4. Try

different deadband values until you find one that makes your Boe-Bot perform well when it follows the
stripe.

ü
TIPS

If your measurements are significantly larger than those shown in the comments
section of Program Listing 4.4, you may need to increase your deadband. If your
measurements are significantly smaller, decreasing the deadband will be helpful.

In brightly lit rooms, decreasing the deadband value may not be enough. The 0.1 µF
capacitors can be substituted for the 0.01 µF capacitors in the Boe-Bot’s RC
circuits. This will increase the RC times by a factor of 10. Keep this in mind when
adjusting the deadband.

' Robotics! v1.5, Program Listing 4.4: Black Stripe Follower
' {$Stamp bs2} ' Stamp Directive.

' Program Listing 4.1 readings with Boe-Bot looking at white/black surfaces.

' color left right
' white 58 67
' black 127 152

'----- Declarations --------------

 left_photo var word ' For storing measured RC times of
 right_photo var word ' the left & right photoresistors.

'----- Initialization ------------

 output 2 ' Set P2 to output.
 freqout 2, 2000, 3000 ' Program start/restart signal.

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 1 21 1 2 • Robotics! Version 1.5

 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:

 ' Measure RC time for right photoresistor.

 high 3 ' Set P3 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 3,1,right_photo ' Measure RC time on P3.

 ' Measure RC time for left photoresistor.

 high 5 ' Set P5 to output-high.
 pause 3 ' Pause for 3 ms.
 rctime 5,1,left_photo ' Measure RC time on P5.

 ' Check if difference between RC times is within the deadband, 7 in this case.
 ' If yes, then forward. If no then skip to check_dir subroutine.

 ' IMPORTANT: The deadband value (currently 7) should be made smaller in
 ' brighter rooms and larger in darker rooms. Otherwise, the Boe-Bot will not
 ' detect the black stripe. It will take some fine tuning to optimize the
 ' Boe-Bot’s ability to follow stripes.

 if abs(left_photo-right_photo) > 7 then check_dir

 forward_pulse:
 pulsout 12, 500
 pulsout 13, 1000
 pause 20
 goto main

 ' Jump to either right_turn or left_turn depending on which RC time is larger.

 check_dir:
 if left_photo < right_photo then right_pulse
 if left_photo > right_photo then left_pulse

'----- Navigation Routines -------

left_pulse: ' Apply one pulse to left then
 pulsout 12, 500
 pulsout 13, 500
 pause 20

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 113

goto main ' go back to main routine.

right_pulse: ' Apply one pulse to right then

 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
goto main ' go back to main routine.

How the Black Stripe Follower Program Works

The three lines below are the only ones changed between Program Listing 4.3 and Program Listing 4.4. The
deadband was increased from “2” to “7,” and the inequality signs (< and >) of the lower two if...then
statements were swapped. As noted earlier, that’s all it takes to change a robotic light seeker (photophile)
into a light avoider (photophobe). Light avoidance is key to this program.

 if abs(left_photo-right_photo) > 7 then check_dir
 .
 .
 .
 if left_photo < right_photo then right_turn
 if left_photo > right_photo then left_turn

Your Turn

Try a black stripe with a 45° turn in the middle of it.

Try a black strip with a 90° turn in it, and see if you can pick a deadband that will navigate it.

Remember, you may need to adjust your deadband to succeed in these maneuvers.

For either or both of the maneuvers above, find the upper and lower limits of deadband values with which the
Boe-Bot still can successfully navigate.

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 1 41 1 4 • Robotics! Version 1.5

This chapter focused on measuring the difference in light intensity and
using it as a guide for the Boe-Bot. The PBASIC command rctime was
used in conjunction with an RC circuit to measure each photoresistor.
The exact resistance value of each photoresistor was disregarded in
favor of the relative difference between the two values. This
difference is a simple subtraction problem, but it can be used to gage
which direction has a higher illuminance.

Real World Example

Light has many applications in robotics and industrial control. Some examples include sensing the edge of a
roll of fabric in the textile industry, determining when to activate streetlights at different times of the year,
when to take a picture, or when to deliver water to a crop of plants.

Deadband is often a problem in navigation control systems. In terms of tracking and controlling machinery,
deadband can result from the uncertainty in measurements due to mechanical connections. The result is that
deadband is the area you don’t know about and try to develop creative ways of dealing with it. On the other
hand, deadband is also the way a thermostat works. In the context of maintaining temperature, differential
gap control uses a built-in deadband region where no correction is made to the temperature.

Boe-Bot Application

As you can see, the Boe-Bot can do an interesting variety of tricks with a pair of photoresistors as its guide. It
can point at light, move itself from a dark place into a light place, follow a guiding flashlight beam and follow a
black stripe with turns in it on a white piece of paper. That’s not bad for some inexpensive photoresistors,
capacitors and resistors.

Summary and
Applications

Chapter #4: Light Sensitive Navigation with Photoresistors

Robotics! Version 1.5 • P a g e P a g e 115

Questions and Projects

Questions

1. Name and describe the element in the photoresistors that changes resistance in response to
illuminance.

2. What does the BASIC Stamp measure to infer the resistance in an RC circuit? What value must

remain fixed in an RC circuit to infer a variable resistance? Why?

3. What are the increments of the rctime measurement?

4. When the value of a photoresistor increases, what does that indicate?

5. How does the program for a light following Boe-Bot differ from that of a dark following Boe-Bot?

6. What role does deadband play in the Boe-Bot’s tendency to move forward? What role does it play in
the Boe-Bot’s tendency to change direction?

Exercises

1. If you have a 10 µF capacitor and your rctime value is 150, what is the resistance of the

photoresistor? Hint: Use equation 4.1.

2. Take a look at the if...then statement setting deadband in Program Listing 4.2. If you want a
deadband that spans differences in RC time measurements of –6 to +6, what argument will you have
to use in what statement?

3. Re-derive Equation 4.1 using a 0.1 µF capacitor. What kinds of problems arise if the 0.1 µF

capacitors replace the 0.01 µF capacitors? What effect does the increased RC value have on the
measurement time? What effect does the measurement time have on servo performance?

Chapter# 4: Light Sensitive Navigation with Photoresistors

P a g e P a g e 1 1 61 1 6 • Robotics! Version 1.5

4. Given the range of rctime values shown in Program Listing 4.4, adjust the pause period so the
servos send pulses 20 ms apart. Assume 1 ms of processing time on top of the known pauses and
delays. Use an average RC time value for your corrections.

5. Challenge: Write some code that checks the RC time measurements and sets the pause period

accordingly.

Projects

1. Develop a program that relies on just one photoresistor for line following. Hint: Instead of taking
the difference between the values of two photoresistors, you will have to set a standard for black
and white RC time measurements and make decisions based on the standard.

2. Add Whiskers to the Boe-Bot. Develop a line following track with obstacles placed in the way.

Program the Boe-Bot to follow the line and also to check the whiskers to monitor for obstacles.
Develop routines that guide the Boe-Bot around obstacles and back to the line.

!

Make sure to wrap each whisker with electrical tape around any part
that might contact other circuits. The only things a whisker should be
allowed to touch are obstacles and its own three-pin header post.

3. One of the interesting facets of relying on deadband for line following is that it can be adjusted

purely in software. This project explores the relationship between deadband settings and stripe
width.

Repeat the Your Turn exercises in Activity #4 with a 3.75 cm. wide black stripe. Do not adjust the
width of your photoresistors; just the deadband settings. Repeat this activity again for a 2.5 cm.
wide stripe. Make notes on the upper and lower deadband limits for each stripe width. In other
words, find the highest and lowest deadband settings that work for successful stripe following.
Graph your results. Is there any apparent mathematical relationship between deadband and stripe
width? Use the graph to approximate a linear relationship, and develop a deadband equation. Test
the equation on a 4.4 cm. wide stripe.

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 117

 Using Infrared Headlights to See the Road

Today's hottest products seem to have one thing in common:
wireless communication. Personal organizers beam data into
desktop computers, and wireless remotes let us channel surf.
With a few inexpensive and widely available parts, the BASIC
Stamp can also use an infrared LED and detector to detect
objects to the front and side of your traveling Boe-Bot.

Detecting obstacles doesn’t require anything as sophisticated as machine
vision. A much simpler system will suffice. Some robots use RADAR or
SONAR (sometimes called SODAR when used in air instead of water). An
even simpler system is to use infrared light to illuminate the robot’s path
and determine when the light reflects off an object. Thanks to the
proliferation of infrared (IR) remote controls, IR illuminators and
detectors are easily available and inexpensive.

The Boe-Bot infrared object detection scheme has a variety of uses. The
Boe-Bot can use infrared to detect objects without bumping into them.
As with the photoresistors, infrared can be used to detect the difference
between black and white for line following. Infrared can also be used to
determine the distance of an object from the Boe-Bot. The Boe-Bot can
use this information to follow objects at a fixed distance, or detect and
avoid high ledges.

Infrared Headlights

The infrared object detection system we’ll build on the Boe-Bot is like a
car’s headlights in several respects. When the light from a car’s
headlights reflects off obstacles, your eyes detect the obstacles and your
brain processes them and makes your body guide the car accordingly.
The Boe-Bot uses infrared LEDs for headlights as shown in Figure 5.1.
They emit infrared, and in some cases, the infrared reflects off objects,
and bounces back in the direction of the Boe-Bot. The eyes of the Boe-
Bot are the infrared detectors. The infrared detectors send signals to
the BASIC Stamp indicating whether or not they detect infrared reflected
off an object. The brain of the Boe-Bot, the BASIC Stamp, makes
decisions and operates the servo motors based on this input.

Chapter #5:
Object Detection
Using Infrared

Infrared

Infra means below, so Infra-red is light
(or electromagnetic radiation) that has
lower frequency, or longer wavelength
than red light. Our IR LED and
detector work at 980 nm. (nanometers)
which is considered near infrared.
Night-vision goggles and IR
temperature sensing use far infrared
wavelengths of 2000-10,000 nm.,
depending on the application.

 Approximate
Color Wavelength
Violet 400 nm
Blue 470
Green 565
Yellow 590
Orange 630
Red 780
Near infra-red 800-1000
Infra-red 1000-2000
Far infra-red 2000-10,000nm

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 1 81 1 8 • Robotics! Version 1.5

The IR detectors have built-in optical filters that allow very little
light except the 980 nm. infrared that we want to detect onto its
internal photodiode sensor. The infrared detector also has an
electronic filter that only allows signals around 38.5 kHz to pass
through. In other words, the detector is only looking for infrared
flashed on and off at 38,500 times per second. This prevents
interference from common IR interference sources such as sunlight
and indoor lighting. Sunlight is DC interference (0 Hz), and house
lighting tends to flash on and off at either 100 or 120 Hz, depending
on the main power source in the country where you reside. Since
120 Hz is way outside the electronic filter’s 38.5 kHz band pass
frequency, it is, for all practical purposes, completely ignored by the
IR detectors.

The Freqout Trick

Since the IR detectors only see IR signals in the neighborhood of
38.5 kHz, the IR LEDs have to be flashed on and off at that
frequency. A 555 timer can be used for this purpose, but the 555
timer circuit is more complex and less functional than the circuit we
will use in this and the next chapter. For example, the method of IR
detection introduced here can be used for distance detection;
whereas, the 555 timer would need additional hardware to do
distance detection.

A pair of Boe-Bot enthusiasts found an interesting trick that made the 555 timer scheme unnecessary. This
scheme uses the freqout command without the RC filter that’s normally used to smooth the signal into a
sine-wave. Even though the highest frequency freqout is designed to transmit is 32768 Hz, the unfiltered
freqout output contains a harmonic with useful properties for a 38.5 kHz IR detector. More useful still is
the fact that you can use a command such as freqout pin, period, 38500 to send a 38.5 kHz harmonic
that the IR detector will detect.

Figure 5.2 shows (a) the signal sent by the command freqout pin, period, 27036. Tuned electronic
receivers, such as the IR detectors we’ll be using, can detect components of this signal that are called
harmonics. The freqout signal’s two dominant low frequency harmonics are shown in Figures 5.2 (b) and
(c). Figure 5.2 (b) shows the fundamental harmonic, and Figure 5.2 (c) shows the third harmonic. These
harmonics are actually components of the unfiltered freqout pulses shown in Figure 5.2 (a). The third
harmonic shown in Figure 5.2 (c) can be controlled directly by entering commands such as freqout pin,
period, 38500 (instead of 27036) for 38.5 kHz, or freqout pin, period, 40000 for 40 kHz, etc.

B
oa

rd
 o

f E
du

ca
tio

n
w

w
w

.s
ta

m
ps

in
cla

ss
.co

m
(9

16
)

62
4

-8
3

33

(c
) 2

0
00

X
3

V
d

d
V

ss
V

in

P
15

P
14

P
13

P
12

P
11

P
10

P
9

P
8

P
7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

X
2

R
ev

 B

R
ed

X
4

 X
5

15

14

 1

3
 1

2

B
la

ck

Object

IR LED
IR
Detector

Figure 5.1: Object detection with IR
Headlights.

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 119

Volts, V

+ 1.25

- 1.25

0

0 Time, us 37(b)
(b) 27036 Hz fundamental harmonic.

0 37Time, us
0

+ 5

Volts, V

+ 1.25

- 1.25

0

0 Time, us 37
Figure 5.2: (a) Unfiltered freqout pulses sent by freqout
pin, period, 27036 (c) 38500 Hz third harmonic.

Even though the freqout trick works, there is an additional problem. The BASIC Stamp does not multitask. The
reason this is a problem is because the IR detector only sends the low signal indicating that it has detected an
object while it is receiving the 38.5 kHz IR. Otherwise, it sends a high signal. Fortunately, it takes the detector
long enough to rebound from its low output state that the BASIC Stamp can capture the value. The reason
that the detector’s output takes so long to rebound is related to its tendency toward slower responses when
it receives a signal with unequal high and low times, of which the signal in Figure 5.2 (a) has many.

Activity #1: Building and Testing the New IR Transmitter/Detector

Parts

 (1) Piezoelectric speaker
 (2) Shrink wrapped IR LEDs
 (2) IR detectors
 (2) 220 Ω resistors
 (misc) wires

 IR
LED 1

2

1

2 Short
Leg

1
2
3

1
2
3

Figure 5.3: IR detector schematic symbol and part on top
row and IR LED schematic symbol and part on bottom row.

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 2 01 2 0 • Robotics! Version 1.5

Build It!

P0

Vss

Vdd

P2

Vss

Piezo

P8

Vss

Vdd

IR
LED

220 Ω

Vss

P7

IR
LED

220 Ω

Vss

P1

Board of Education
www.stampsinclass.com

(916) 624-8333

(c) 2000

X3

Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

Rev B

Red

X4 X5

15 14 13 12

Black

To
Servos

Longer
leads

Figure 5.4: IR headlights (a) Schematic (b) wiring diagram.

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 121

One IR pair (IR LED and detector) is mounted on each corner of the breadboard. Figure 5.4 shows the IR
headlights circuit as both a schematic and wiring diagram. Build the circuit as shown.

Testing the IR Pairs

The key to making each IR pair work is to send 1 ms of unfiltered 38.5 kHz freqout harmonic followed
immediately by testing the signal sent by the IR detector and saving its output value. The IR detector’s normal
output state when it sees no IR signal is high. When the IR detector sees the 38500 Hz harmonic sent by the IR
LED, it’s output will drop from high to low. Of course, if the IR does not reflect off an object, the IR detector’s
output simply stays high. Program Listing 5.1 shows an example of this method of reading the detectors.

q Enter and run Program Listing 5.1.

q This program makes use of the Debug Terminal, so leave the serial cable connected to the BOE while

Program Listing 5.1 is running.

' Robotics! v1.5, Program Listing 5.1: IR Pairs Display.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 left_IR_det var bit ' Two bit variables for saving IR
 right_IR_det var bit ' detector output values.

'----- Initialization ------------

 output 2 ' Set all I/O lines sending freqout
 output 7 ' signals to function as outputs
 output 1

'----- Main Routine --------------

main:
 ' Detect object on the left.
 freqout 7, 1, 38500 ' Send freqout signal - left IRLED.
 left_IR_det = in8 ' Store IR detector output in RAM.
 ' Detect object on the right.
 freqout 1, 1, 38500 ' Repeat for the right IR pair.
 right_IR_det = in0

 debug home, "Left= ", bin1 left_IR_det
 pause 20

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 2 21 2 2 • Robotics! Version 1.5

 debug " Right= ", bin1 right_IR_det
 pause 20

goto main

q While program Listing 5.1 is running, point the IR detectors so nothing nearby could possibly reflect

infrared back at the detectors. The best way to do this is to point the Boe-Bot up at the ceiling. The
Debug output should display both left and right values as equal to “1.”

q By placing your hand in front of an IR pair, it should cause the Debug Terminal display for that detector to

change from “1” to “0.” Removing your hand should cause the output for that detector to return to a “1”
state. This should work for each individual detector, and you also should be able to place your hand in
front of both detectors and make both their outputs change from “1” to “0.”

q If the IR Pairs passed all these tests, you’re ready to move on; otherwise, check your program and circuit

for errors.

How the IR Pairs Display Program Works

Two bit variables are declared to store the value of each IR detector output. The first freqout command in
the main routine is different. The command freqout 7, 1, 38500 sends the on-off pattern shown in
Figure 5.2 via left IR LED circuit by causing it to flash on and off rapidly. The harmonic contained in this signal
either bounces off an object, or not. If it bounces off an object and is seen by the IR detector, the IR detector
sends a low signal to IO pin P8. Otherwise, the IR detector sends a high signal to P8. So long as the next
command after the freqout command is the one testing the state of the IR detector’s output, it can be saved
as a variable value in RAM. The statement left_IR_det = in8 checks P8, and saves the value (“1” for high
or “0” for low) in the left_IR_det bit variable. This process is repeated for the other IR pair, and the IR
detector’s output is saved in the right_IR_det variable. The debug command then displays the values in
the debug window.

Your Turn

q Experiment with detuning your IR pairs by using frequencies above 38.5 kHz. For example, try 39.0, 39.5,

40.0, 40.5 and 41 kHz. Note the maximum distance that each will detect by bringing an object
progressively closer to the IR pairs and noting what distance began to cause the IR detector output to
switch from “1” to “0.”

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 123

Activity #2: Object Detection and Avoidance

An interesting thing about the IR detectors is that their outputs are just like the whiskers. When no object is
detected, the output is high; when an object is detected, the output is low. In this activity, Program Listing 3.2:
Roaming with Whiskers is modified so that it works with the IR detectors.

Converting the Whiskers Program For IR Object Detection/Avoidance

Roaming with Whiskers can be modified so that each IR LED circuit receives the freqout signal. Immediately
after sending the freqout signal the output state of the IR detector in the pair needs to be checked and
recorded. After the information is recorded, it can be compared using the same if...then statements and
navigation routines used in the original whiskers navigation program (Program Listing 3.2).

' Robotics! v1.5, Program Listing 5.2: Roaming with Whiskers Adjusted for IR Pairs.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 pulse_count var byte ' For...next loop counter.
 left_IR_det var bit ' Two bit variables for saving IR
 right_IR_det var bit ' detector output values.

'----- Initialization ------------

 output 2 ' Set all I/O lines sending freqout
 output 7 ' signals to function as outputs
 output 1
 freqout 2, 2000, 3000 ' Program start/restart signal.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:
 ' Detect object on the left.
 freqout 7, 1, 38500 ' Send freqout signal - left IRLED.
 left_IR_det = in8 ' Store IR detector output in RAM.
 ' Detect object on the right.
 freqout 1, 1, 38500 ' Repeat for the right IR pair.
 right_IR_det = in0

 ' With the exception that values stored in RAM are used instead of
 ' input register values, the decision making process is the same as
 ' the one used in Program Listing 3.2.

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 2 41 2 4 • Robotics! Version 1.5

 if left_IR_det = 0 and right_IR_det = 0 then u_turn
 if left_IR_det = 0 then right_turn
 if right_IR_det = 0 then left_turn

 ' The commands from this point onward are identical to
 ' Program Listing 3.2: Roaming with Whiskers.

 forward: ' If no detect, one forward pulse.
 pulsout 12,500
 pulsout 13,1000
 pause 20

goto main ' Check again.

'----- Navigation Routines -------

 left_turn: ' Left turn routine.
 gosub backward ' Call Backward: before turning.
 for pulse_count = 0 to 35
 pulsout 12, 500
 pulsout 13, 500
 pause 20
 next
 goto main

 right_turn: ' Right turn routine.
 gosub backward ' Call Backward: before turning.
 for pulse_count = 0 to 35
 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
 next
 goto main

 u_turn: ' U-turn routine.
 gosub backward ' Call Backward: before turning.
 for pulse_count = 0 to 75
 pulsout 12, 1000
 pulsout 13, 1000
 pause 20
 next
 goto main

'----- Navigation Subroutine -----

 backward: ' Used by each navigation routine .

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 125

 for pulse_count = 0 to 75
 pulsout 12, 1000
 pulsout 13, 500
 pause 20
 next
 return

How the Roaming with Whiskers Adjusted for IR Pairs Program Works

Two bit variables, left_IR_det and right_IR_det, are added for capturing and holding the IR detectors’
output states.

declarations:
 pulse_count var byte
 left_IR_det var bit
 right_IR_det var bit

The main routine has four additional commands, two for checking the output of each IR detector. Each
freqout command sends a 1 ms unfiltered freqout signal to the IR LED circuit in the pair. The value at the
input connected to the IR detector’s output is saved as a bit variable in the BASIC Stamp’s RAM. For example,
the command freqout 7, 1, 38500 is followed immediately by the statement left_IR_det = in8. This
command sets the value of left_IR_det equal to the input at P8, the I/O pin connected to the left IR
detector’s output.

main:

 check_IR_pairs:

 freqout 7, 1, 38500
 left_IR_det = in8

 freqout 1, 1, 38500
 right_IR_det = in0

The saved bit values for each IR detector output can be used in the exact same way the whiskers navigation
program used them. With one exception, the navigation routines that are executed according to if...then
statements are identical to those originally used in Program Listing 3.2: Roaming with Whiskers. The
if...then statements themselves are changed to accommodate the need to capture and store the output
from each IR detector; whereas, the if...then statements in the whiskers program used the input values
directly.

 if left_IR_det = 0 and right_IR_det = 0 then u_turn

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 2 61 2 6 • Robotics! Version 1.5

 if left_IR_det = 0 then right_pulse
 if right_IR_det = 0 then left_pulse

Your Turn

As with Program Listing 3.2, you can fine tune the end arguments in the for...next loops to fine tune the
Boe-Bot’s turning and backing up behaviors.

Activity #3: Navigating by the Numbers in Real-Time

In Program Listing 5.2, the Boe-Bot checked between each forward pulse to see if it was still okay to move
forward. When the Boe-Bot performed maneuvers, they were essentially pre-recorded motions. Another
approach to IR navigation is to check the sensors, apply a single pulse based on the sensor input, then check
the sensors again. The Boe-Bot behaves very differently using this technique.

Real-Time IR Navigation

Program Listing 5.3 checks the IR pairs and delivers one of four different pulses based on the sensors. Each
of the navigational routines is just a single pulse in either the forward, left_turn, right_turn or
backward directions. After the pulse is applied, the sensors are checked again, then another pulse is applied,
etc. This program also makes use of some programming techniques you will find very useful.

' Robotics! v1.5, Program Listing 5.3: IR Roaming by Numbers in Real Time
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------
 ' The lower 2 bits of the
 sensors var nib ' sensors variable are used to store
 ' IR detector values.
'----- Initialization ------------

 output 2 ' Set all I/O lines sending freqout
 output 7 ' signals to function as outputs
 output 1
 freqout 2, 2000, 3000 ' Program start/restart signal.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:
 ' Detect object on the left.
 freqout 7,1,38500 ' Send freqout signal - left IRLED.

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 127

 sensors.bit0 = in8 ' Store IR detector output in RAM.
 ' Detect object on the right.
 freqout 1,1,38500 ' Repeat for the right IR pair.
 sensors.bit1 = in0

 pause 18 ' 18 ms pause(2 ms lost on freqout).

 ' By loading the IR detector output values into the lower 2 bits of the sensors
 ' variable, a number btwn 0 and 3 that the branch command can use is generated.

 branch sensors,[backward,left_turn,right_turn,forward]

'----- Navigation Routines -------

 forward: pulsout 13,1000: pulsout 12,500: goto main
 left_turn: pulsout 13,500: pulsout 12,500: goto main
 right_turn: pulsout 13,1000: pulsout 12,1000: goto main
 backward: pulsout 13,500: pulsout 12,1000: goto main

How IR Roaming by Numbers in Real-Time Works

q Look up the branch command in Appendix C: PBASIC Quick Reference or in the BASIC Stamp Manual.

This Program listing declares the sensors variable, which is one nibble of RAM. Of the four bits in the
sensors variable, only the lowest two bits are used. Bit-0 is used to store the left detector’s output, and bit-1
is used to store the right detector’s output.

declarations:
 sensors var nib

I/O pins P7, P1, and P2 are declared outputs. P2 is declared an output so that freqout can send signals to the
speaker. P7 and P1 are declared outputs because these lines drive the left and right IR LED circuits.

initialization:
 output 7
 output 1
 output 2
 freqout 2,2000,3000

The main routine starts with the freqout commands used to send the IR signals, but the commands following
each freqout command are slightly different from those used in the previous program. Instead of saving the
bit value at the input pin to a bit variable, each bit value is stored as a bit in the sensors variable. Bit-0 of

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 2 81 2 8 • Robotics! Version 1.5

sensors is set to the binary value of in8, and bit-1 of the sensors variable is set to the binary value of in0.
After setting the values of the lower two bits of the sensors variable, it will have a decimal value between “0”
and “3.” The branch command uses these numbers to determine to which label it sends the program.

main:

 freqout 7,1,38500
 sensors.bit0 = in8

 freqout 1,1,38500
 sensors.bit1 = in0

 pause 18

 branch sensors,[backward,left_turn,right_turn,forward]

The four possible binary numbers that result are shown in Table 5.1. Also shown is the branch action that
occurs based on the value of the state argument.

Table 5.1: IR Detector States as Binary Numbers

Binary Value
of state

 Decimal Value
of State

What the Value Indicates,
Branch Action Based on State

0000 0 in8 = 0 and in0 = 0,
Both IR detectors detect object, pulse servos backward.

0001 1 in8 = 0 and in0 = 1,
Left IR detector detects object, pulse right_turn

0010 2 in8 = 1 and in0 = 0,
Right IR detector detects object, pulse for left_turn

0011 3 in8 = 1 and in0 = 1,
Neither IR detector detects object, pulse forward.

Depending on the value of the sensors variable, the branch command sends the program to one of four
routines: forward, left_turn, right_turn, or backward. Whichever routine the program ends up in
gives the servos a single pulse in the appropriate direction, after which, the routine sends the program back
to the main routine for another check of the sensors.

routines:

 forward: pulsout 13,1000: pulsout 12,500: goto main

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 129

 left_turn: pulsout 13,500: pulsout 12,500: goto main
 right_turn: pulsout 13,1000: pulsout 12,1000: goto main
 backward: pulsout 13,500: pulsout 12,1000: goto main

ü
TIP

Each routine is a label followed by three commands, all on the same line. When you put
more than one command on the same line, each must be separated by a colon. If a label
appears on a line with more than one PBASIC command, it must be the first item on that
line.

Your Turn

You can rearrange the address labels in the branch command so that the Boe-Bot does different things in
response to obstacles. One interesting activity is to try replacing the backward address with the forward
address. There will be two instances of forward in the branch address list, but this is not a problem. Also,
swap the left_turn and right_turn addresses.

q Try making the changes just discussed.

q Run the modified version of Program Listing 5.3, and have the Boe-Bot follow your hand as you lead it

places.

If you stop your hand, the Boe-Bot will run into it. Because of this, one Boe-Bot cannot be programmed to
follow another without some way of distance detection. If the one in front stops, the one in back will crash
into it. This problem will be fixed as an example in the next chapter.

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 3 01 3 0 • Robotics! Version 1.5

This chapter covered a unique technique for infrared object detection.
By shining infrared into the Boe-Bot’s path and looking for its
reflection, object detection can be accomplished. Infrared LED circuits
are used to send a 38.5 kHz signal by using a unique and little-known
property of freqout. This property allows you to control a harmonic
of the freqout PWM wave-shaping signal via IR LED circuits.

PBASIC programming techniques also were covered for minimizing the time spent on capturing the IR
detector’s output signal. The detector’s output signal has a delay that makes it possible for the BASIC Stamp
to read the IR detector’s output even after the freqout signal no longer is transmitting.

Navigation techniques for checking sensors between each servo pulse and binary processing of the sensor
outputs also was introduced. Used together, these two techniques allow for very responsive Boe-Bot
performance.

Real World Example

Infrared is one of the more popular amenities on electronic products. TV remotes, palmtop computers, and
fancy calculators all use infrared for communication. A variety of communication schemes exist for
transmitting data. A TV remote control, for example, sends a high signal by flashing its IR transmitter at 38.5
kHz. A low signal is no IR. The detectors in some TVs, VCRs, etc. are identical to the receiver used in the Boe-
Bot.

The detection scheme in the automatic door openers common in convenience and grocery stores relies on
the same theory of operation for object detection used by the Boe-Bot. Whenever you trigger one of these
door openers, it’s because you walked into and broke the IR beam being reflected back at the receiver.
Infrared detectors also are mounted on many different conveyer belts. Factories use them to count products
as they fly by, and grocery stores use them to detect when the groceries have reached the end of the
conveyer belt. In grocery stores, these belts automatically move the groceries forward so the checker can
reach them. To prevent the conveyer belt from piling groceries on the scanner, an IR detector is mounted at
the end of the conveyer belt. When the Twix candy bar interrupts the IR beam shining across the conveyer
belt, the IR detector’s output changes. When this change is detected by a microcontroller, it stops the motor
that runs the conveyer belt.

Boe-Bot Application

The unique thing about IR detectors is that they allow the Boe-Bot to detect objects without actually touching
them. In maze competitions where you lose points by touching the walls, this is a real plus.

Summary and
Applications

Chapter #5: Object Detection Using Infrared

Robotics! Version 1.5 • P a g e P a g e 131

Questions and Projects

Questions

1. What does infrared mean? How does infrared differ from near infrared?

2. What are the two kinds of filters built into the IR detectors in the Robotics! Kit? What does each do?

3. Describe what each of the two IR detector outputs mean.

4. Why is it important to check and save the output state of the IR detector immediately after sending
the 38.5 kHz signal?

5. What happens if you send a 39.5 kHz signal instead of a 38.5 kHz signal?

6. How does Program Listing 5.2 resemble Program Listing 3.2? How do the two programs differ?

7. What values would you expect to see the sensors variable in Program Listing 5.3 storing?

8. What character is required to separate more than one PBASIC command on the same line? What

convention must always be followed with program labels when multiple commands are put on the
same line?

Exercises

1. If you wanted to send a 35 kHz infrared harmonic out the Boe-Bot’s IR LED circuit, what command

would you use?

2. Modify Program Listing 5.2 so that the right IR pair is checked before the left pair.

3. Modify Program Listing 5.2 so that it makes the Boe-Bot follow objects instead of avoiding them.
Describe the problems you encounter, if any.

Chapter #5: Object Detection Using Infrared

P a g e P a g e 1 3 21 3 2 • Robotics! Version 1.5

Projects

1. There are two ways to make the IR pair circuit less sensitive to objects. In other words, the circuit
can be made near-sighted, so that it only sees objects that are closer. The first involves a physical
change: the replacement of the 220 Ω resistors with 470 Ω resistors. The second involves detuning
by sending a harmonic that’s not at the IR detector’s center frequency of 38.5 kHz.

q Test for the maximum detection distance for each IR pair by holding an object in front of the

pair while Program Listing 5.1 is running. As you pull the object slowly away from the IR pair,
make a note of the distance when the debug window started to flicker between “0” and “1.”

q Replace both 220 Ω resistors with 470 Ω resistors.

q Repeat the first two steps and note any change in the maximum detection distance for each IR

pair.

q Remove the 470 Ω resistors and put the 220 Ω resistors back in.

q Place the object used for testing detection at the maximum detection distances determined

using the 470 Ω resistor for the first IR pair.

q Modify the freqout frequency arguments by iteratively adding 25 at a time to the freqout

command’s frequency argument. After each time the frequency argument is changed, re-run
Program Listing 5.1. When you start to observe the flickering 0/1 in the Debug Terminal display,
it indicates the object is falling out of range.

2. One of the shortcomings of IR object detection is that the Boe-Bot’s IR detectors do not detect

black. That’s because black absorbs IR instead of reflecting it. The Boe-Bot tends to run into black
objects when roaming with IR because it doesn’t see them. Add whiskers to your breadboard and
modify Program Listing 5.2 so that it checks the whisker inputs before checking the IR detectors. In
this way the Boe-Bot can check to see if it has run into a black object.

!

Remember: Wrap the portions of the whiskers with electrical tape that could
come into contact with circuits other than the whisker contact posts.

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 133

What’s a Frequency Sweep?

In general, a frequency sweep is what you do when
checking your favorite radio stations. Set the station for
one frequency, and check the output. If you don’t like the
song that’s playing, change the frequency and check the
output again.

 Activity #1: Testing the Frequency Sweep

The Boe-Bot can be programmed to send different IR frequencies, and to check for object detection at each
frequency. By keeping track of the frequencies for which the IR detector reported an object, its distance can
be determined. The left axis of the graph in Figure 6.1 shows how the sensitivity of the IR detector’s
electronic filter decreases as it receives frequencies greater than 38.5 kHz. The filter essentially causes the IR
detector to become less able to detect IR at these frequencies. Another way to think about it is that you have
to move an object closer if you want it to be detected at a less sensitive frequency. Since the detector is less
sensitive, it will take brighter IR (or a closer object) to make the detector see the signal.

Figure 6.1: The left axis of
the graph compares IR
frequency to the relative
sensitivity of the IR
detector. The right side of
the graph shows how the
relative sensitivity of the IR
detector relates to distance
detection. As detector
sensitivity decreases with
the increase in frequency,
the object must be closer
for the IR signal to be
detected. Why closer?
When the detectors are
made less sensitive by
sending higher frequencies,
it’s like giving them darker
and darker lenses to look
through. Just as a flashlight
beam appears brighter
when reflected off an
object that’s closer to you,
IR reflected off a closer
object appears brighter to
the IR detectors.

Bo
ar

d
of

 E
du

ca
tio

n
w

w
w

.s
ta

m
p

s
in

c
la

s
s.

c
o

m
(9

16
)

62
4-

83
33

(c
)

20
0

0

X3
Vd

d
Vs

s
Vi

n

P
15

P
14

P
13

P
12

P
11

P
10

P
9

P
8

P
7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

X
2

R
ev

 B

R
e

d

X4

X

5

1
5

 1
4

 1

3
 1

2

B
la

ck

Chapter #6:
Determining Distance
Using Frequency
Sweep

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 3 41 3 4 • Robotics! Version 1.5

The right axis of Figure 6.1 shows how different frequencies can be used to indicate in which zone a detected
object is located. By starting with a frequency of 38.5 kHz, whether or not an object is in Zone 1-5 can be
determined. If an object is not yet detected, it must be beyond the detector limit (Zone 0). If an object is
detected, by testing again at 39.25 kHz, the first datum about distance is collected. If 38.5 kHz is detected the
object but 39.25 kHz did not, the object must be in Zone 1. If the object was detected at both frequencies, but
not at 40.5 kHz, we know it’s in Zone 2. If all three frequencies detected the object, but it was not detected at
41.75 kHz, we know it is in Zone 3. If all four frequencies detected the object, but not 42.5 kHz, we know it’s in
Zone 4. If all the frequencies detected the object, we know it’s in Zone 5.

F Y I

The frequency sweep technique used in this chapter works fairly well for the Boe-Bot, and the
components are only a fraction of the cost of common IR distance sensors. The trade off is that the
accuracy of this method is also only a fraction of the accuracy of common IR distance sensors. For basic
Boe-Bot tasks that require some distance perception, such as following another Boe-Bot, this interesting
technique does the trick. Along with adding low-resolution distance perception to the Boe-Bot’s senses,
it also provides an introduction to the concepts of filters and frequency response.

Build It!

q Use the same IR detection circuit from Chapter 5, shown in Figure 5.4, for this activity.

Programming the IR Distance Gage

Programming the BASIC Stamp to send different frequencies involves a for...next loop. The counter
variable can be used to give the freqout command different frequencies to check. This program introduces
the use of arrays. Arrays are used in Program Listing 6.1 to store the IR detector outputs at the different
frequencies. For the l_values variable, the Zone 0 output is stored in bit-0 of l_values. The Zone 1
output is stored in bit-1 l_values.bit1, and so on, all the way through Zone 5, which is stored in bit-5 of
l_values. The same measurements are taken for r_values.

q Enter and run Program Listing 6.1.

q This program makes use of the Debug Terminal, so leave the serial cable connected to the BOE while

Program Listing 6.1 is running.

' Robotics! v1.5, Program Listing 6.1: IR Distance Gage.
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 counter var nib ' Multipurpose counting variable.
 l_values var byte ' Two vars for storing left & right

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 135

 r_values var byte ' freq sweep IR detector outputs.
 IR_freq var word ' Stores frequency arg for freqout.

'----- Initialization ------------

 output 7 ' Set all I/O lines sending freqout
 output 1 ' signals to function as outputs.

'----- Main Routine --------------

 main:

 l_values = 0 ' Reset l_values and r_values to 0.
 r_values = 0

 ' Load sensor outputs into l_values and r_values using a for...next loop,
 ' and a lookup table, and bit addressing.

 for counter = 0 to 4

 lookup counter,[37500,38250,39500,40500,41500], IR_freq

 freqout 7,1, IR_freq
 l_values.lowbit(counter) = ~in8

 freqout 1,1, IR_freq
 r_values.lowbit(counter) = ~in0

 next

 ' Display l_values and r_values in binary and ncd format.

 debug home, cr, cr, "Left readings Right Readings", cr
 debug " ",bin8 l_values, " ", bin8 r_values, cr
 debug " ",dec5 ncd(l_values), " ", dec5 ncd(r_values), cr, cr

 goto main

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 3 61 3 6 • Robotics! Version 1.5

When the Boe-Bot is placed facing a nearby wall (3 to 5
cm.), the Debug Terminal should display something
similar to Figure 6.2. As the Boe-Bot is moved closer to
and further from the wall, the numbers displayed by
the Debug Terminal should change increase and
decrease.

q Place the Boe-Bot so that it faces the wall with its

IR LEDs about 1 cm. away from the wall. The left
and right readings should both be at “4” or “5.” If
not, make sure each IR detector is facing in the
same direction as its IR LED. Also check to make
sure you are using 220 Ω resistors.

q Gradually back the Boe-Bot away from the wall. As

the Boe-Bot is backed away from the wall, the left
and right readings should gradually decrease to “0.”

q If either or both sides stay at all zeros or all ones, it indicates a possible mistake in either your wiring or

in the program. If this is the case, unplug your battery pack from the BOE. Then, check your wiring and
PBASIC code for errors.

FYI

The maximum detection distance is 20 to 30 cm., depending on the reflectivity of the
wall. Some tinkering with how far left/right each IR pair is pointing may be required
to get the numbers to be the same at a given distance. A high level of precision IS
NOT necessary for these activities. Appendix H: Fine Tuning IR Distance Detection
presents a method for calibrating the Boe-Bot’s distance detectors. This method can
be time consuming, and it’s not required for Activity #2 or #3.

ü
TIP

Use a wire stripper to unsheathe about 1 cm. of insulation from a jumper wire. Slide
the insulation up one of the IR LED leads. This will protect the leads from touching
each other during adjustment.

Figure 6.2: Frequency sweep data in binary and ncd
format.

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 137

How the Distance Gage Program Works

q Look up the lookup command in Appendix C: PBASIC Quick Reference or in the BASIC Stamp Manual

before continuing.

Counter is a nibble variable that is used to index a for...next loop. The for...next loop is used for
checking the IR detectors at various frequencies. The l_values and r_values variables store the outputs
for the left and right IR detectors at the various frequencies used. Each variable stores five binary
measurements. Since the IR detector outputs are tested at a variety of frequencies, IR_freq is a variable
that can store the value of the frequency that gets sent each time through the frequency testing loop.

declarations:

 counter var nib
 l_values var byte
 r_values var byte
 IR_freq var word

The main routine contains two routines, one for frequency sweep and another for displaying the data
collected. The first step in the frequency sweep is setting l_values and r_values to zero. This is
important since individual bits in each variable are modified. Clearing l_values and r_values starts each
variable with a clean slate. Then individual bits can be set to “1” or “0,” depending on what the IR detectors
report.

main:

 l_values = 0
 r_values = 0

The for…next loop is where the frequency sweep occurs. The lookup command checks the counter value
to determine which frequency to copy to the IR_freq variable. When counter is “0,” 37500 gets copied to
IR_freq. When counter is “1,” 38250 is copied to IR_freq. As the value of counter is incremented from
“0” to “4” by the for...next loop, each successive value in the lookup table is copied to IR_freq.

 for counter = 0 to 4

 lookup counter,[37500,38250,39500,40500,41500],IR_freq

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 3 81 3 8 • Robotics! Version 1.5

Note that the lookup table begins the frequency sweep at 37500 (most sensitive) and ends at 41500 (least
sensitive). You might be wondering why the numbers in the lookup table don’t match the frequency values
from Figure 6.1. It’s true that if the BASIC Stamp could transmit a 50% duty cycle pulse train (pulses with the
same high time and low time) at these frequencies, they would have to match the frequencies specified for
the IR detector’s filter. However, the freqout command introduces other factors that affect the amplitude
of the harmonics transmitted by the IR LEDs. The math involved in predicting the optimum frequency
arguments to use is very advanced and is well outside the scope of this text. Even so, the best frequencies for
a given distance can be determined experimentally. You can consult Appendix H: Tuning IR Distance Detection
for details, but try the remaining activities in this book first because the list of values we are using are known
to be reliable.

The left sensor is checked by using freqout to send the current value of IR_freq. Next, the .lowbit()
argument is used to address each successive bit in l_values. When counter is “0,” the
.lowbit(counter) argument addresses bit-0 of l_values. When counter is “1,” the
.lowbit(counter) argument addresses bit-1 of l_values, and so on. Before writing the value of in8 to
l_values.lowbit(counter), the NOT operator (~) is used to invert the bit’s value before it is stored to its
bit array location in l_values. The same process is then repeated for r_values. After the fifth time
through the for...next loop, the IR data bits have all been loaded into l_values and r_values.

 freqout 7,1,IR_freq
 l_values.lowbit(counter) = ~in8

 freqout 1,1,IR_freq
 r_values.lowbit(counter) = ~in0

 next

The display subroutine uses a variety of formatters and text strings to display the l_values and r_values
variables. The first row of the display is the text heading indicating which readings correspond the right IR
detector and which readings correspond to the left IR detector. Remember that left and right are treated as
though you are sitting in the Boe-Bot driver’s seat.

display:
 debug home, cr, cr, "Left readings Right Readings", cr

The second row displays l_values and r_values in binary format. This allows for observation of how the
bit values in l_values and r_values change as the apparent distance of an object changes.

 debug " ",bin8 l_values, " ", bin8 r_values, cr

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 139

The third row displays the ncd value of each variable. The NCD operator returns a value that corresponds to
the location of the most significant bit in a variable. If the variable is all zeros, ncd returns a zero. If the least
significant bit contains a “1,” and all the rest of the digits are “0,” NCD returns a “1.” If bit-1 contains a “1,” but
all the numbers to the left of bit-1 are zeros, ncd returns a “2,” and so on. The NCD operator is a handy way
of indicating how many ones have been loaded into the lower bits of l_values and r_values. What’s really
handy is that ncd directly tells you in which zone the object has been detected.

 debug " ",dec5 ncd(l_values), " ", dec5 ncd(r_values), cr, cr

When the display routine is finished sending data to the Debug Terminal, program control is returned to the
main label.

goto main

Your Turn

q With Program Listing 6.1 running, place the Boe-Bot facing the wall so that the IR LEDs are about 1.5 cm.

from the wall. For best results, tape a white sheet of paper to the wall.

q Make a note of the left and right readings.

q Start pulling the Boe-Bot away from the wall.

q Each time the value of one or the other sensors decreases, make a note of the distance. In this way you

can determine the zones for each of your Boe-Bot’s IR pairs.

q If the readings on one side are consistently larger than the other, you can point the IR LED on the side

reporting the larger readings outward a little further. For example, if the left IR pair continually reports
higher readings than the right IR pair, try pointing the left IR LED and detector a little further to the left.

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 4 01 4 0 • Robotics! Version 1.5

Activity #2: The Drop-off Detector

One application for distance detection is checking for a drop-off. For
example, if the Boe-Bot is navigating on a table, it can change direction
if it sees the edge of the table. All you have to do is point the IR pairs
downward so that they are both pointing at the table right in front of
the Boe-Bot. A distance detection program can then be used to detect
that the table is close-up. When the Boe-Bot nears the edge of a table,
one or both of the distance detectors will start reporting that they no
longer see something close-up. That means it’s time to turn away from
the abyss.

q Point your IR pairs at the surface directly in front of the Boe-Bot as

shown in Figure 6.3. The IR pairs should be pointed downward 45°
from horizontal and outward 45° from the Boe-Bot’s center line.

q Perform the tests below using Program Listing 6.1 before trying

program Listing 6.2.

q Record the IR pair outputs when the Boe-Bot is looking straight at the table. If the values of the IR pairs

when they are looking at your tabletop are “3” or more, it indicates your detectors are seeing what they
are supposed to see.

q Record the IR pair outputs when the Boe-Bot is looking off the edge of the table. If these values remain

less than “3,” the Boe-Bot is ready to try Program Listing 6.2.

q If the Boe-Bot does not give you steady and consistent readings of “3” or more when the Boe-Bot is

looking at the table, try first adjusting the direction the IR pairs are pointing. Also, if the Boe-Bot does
not consistently register less than “3” when it’s looking off the edge of the table, some additional
adjustment of the IR pairs also is in order.

Figure 6.3: IR LED adjustment for edge
detection.

ü
TIP

Go through the Chapter #6 activities first using the
numbers given in the program listings. If you used
Appendix H to calibrate your Boe-Bot’s distance
detectors, try the values you determined only after first
trying the values given in the example programs.

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 141

q If the sensors report “3” or more while looking at the table and “2” or less when looking off the edge, the
Boe-Bot is ready for Program Listing 6.2.

q If no physical adjusting works, try the instructions in Appendix H, then repeat the tests above.

!

Make sure to be the spotter for your Boe-Bot when running Program Listing 6.2.
Always be ready to pick your Boe-Bot up as it approaches the edge of the table
it’s navigating. If the Boe-Bot tries to drive off the edge, pick it up before it
takes the plunge. Otherwise, your Boe-Bot might become a Not-Bot!

When spotting your Boe-Bot while it’s avoiding drop-offs, be ready to pick it up
from above. Otherwise, the Boe-Bot will see your hands instead of the drop-off
and not perform as expected..

Programming for Drop-Off Detection

Program Listing 6.2 uses modified versions of the forward, right_turn, left_turn and backward routines that
have been used and reused in every chapter since Chapter #2. The number of pulses in each routine have
been adjusted for better performance along a table edge. The check_sensors subroutine takes distance
measurements by recycling code from Program Listing 6.1: IR Distance Gage.

q Run and test Program Listing 6.2. Remember, always be ready to pick your Boe-Bot up if it tries to run

off the table.

' Robotics! v1.5, Program Listing 6.2: Drop-off Detection
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 counter var nib ' For...next loop index variable.
 l_values var word ' Store R sensor vals for processing.
 r_values var word ' Store L sensor vals for processing.
 l_IR_freq var word ' Stores L IR freqs from lookup table.
 r_IR_freq var word ' Stores R IR freqs from lookup table.

'----- Initialization ------------

 low 13 ' Initialize servo line startup values.
 low 12
 output 2 ' Declare freqout lines to be outputs.
 output 7

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 4 21 4 2 • Robotics! Version 1.5

 output 1
 freqout 2,500,3000 ' Signal program is starting/restarting.

'----- Main Routine --------------

main: ' Main routine

 ' The command “gosub check_sensors” sends the program to a subroutine that
 ' loads distance values into l_values and r_values. So, when the program returns
 ' from the check_sensors subroutine, the values are updated and ready for
 ' distance based decisions.

 gosub check_sensors

 ' The distances are checked for four different inequalities. Depending on the
 ' inequality that turns out to be true, the program either branches to the
 ' forward, left_turn, right_turn or backward navigation routine.

 if l_values >= 3 and r_values >= 3 then forward
 if l_values >= 3 and r_values < 3 then left_turn
 if l_values < 3 and r_values >= 3 then right_turn
 if l_values < 3 and r_values < 3 then backward

goto main ' Repeat the process.

'----- Navigation Routines -------

 forward: ' Deliver a single forward pulse, then
 pulsout 13,1000
 pulsout 12,500
 pause 10
 goto main ' go back to the main: label.

 left_turn: ' Deliver eight left pulses, then
 for counter = 0 to 8
 pulsout 13,500
 pulsout 12,500
 pause 20
 next
 goto main ' go back to the main: label.

 right_turn: ' Deliver eight right pulses, then
 for counter = 0 to 8
 pulsout 13,1000
 pulsout 12,1000
 pause 20
 next

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 143

 goto main ' go back to the main: label.

 backward: ' Deliver eight backward pulses, then
 for counter = 0 to 8
 pulsout 13,500
 pulsout 12,1000
 pause 20
 next
 goto main ' go back to the main: label.

'----- Subroutines ---------------

 ' The check sensors subroutine is a modified version of Program Listing 6.1
 ' without the Debug Terminal display. Instead of displaying l_values and
 ' r_values, the main routine uses these values to decide which way to go.

 check_sensors:

 l_values = 0 ' Reset l_values and r_values to 0.
 r_values = 0

 ' Load sensor outputs into l_values and r_values using a for...next loop,
 ' a lookup table, and bit addressing.

 for counter = 0 to 4

 check_left_sensors:
 lookup counter,[37500,38250,39500,40500,41500],l_IR_freq
 freqout 7, 1, l_IR_freq
 l_values.lowbit(counter) = ~ in8

 check_right_sensors:
 lookup counter,[37500,38250,39500,40500,41500],r_IR_freq
 freqout 1, 1, r_IR_freq
 r_values.lowbit(counter) = ~ in0

 next

 ' Convert l_values and r_values from binary to ncd format.

 l_values = ncd l_values
 r_values = ncd r_values

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 4 41 4 4 • Robotics! Version 1.5

 ' Now l_values and r_values each store a number between 0 and 5 corresponding
 ' to the zone the object is detected in. The program can now return to the
 ' part of the main routine that makes decisions based on these distance
 ' measurements.

 return

How the Drop-off Avoidance Program Works

The first thing the main routine does is call the check_sensors subroutine. Note that check_sensors is
simply Program Listing 6.1 with no Debug Terminal display placed in a subroutine. Instead of debugging the
NCD values of l_detect and r_detect, the values of these two variables are simply converted to ncd values
using the statements:

 l_values = ncd l_values

and

 r_values = ncd r_values

After calling the check_sensors subroutine, l_values and r_values are numbers between “0” and “5.”
These values are used instead of the “1” and “0” values used in the whiskers program. After the program
returns from the check_sensors subroutine, l_values and r_values are checked against the
benchmarks distance indicating the edge of the table has been detected.

 if l_values >= 3 and r_values >= 3 then forward
 if l_values >= 3 and r_values < 3 then left_turn
 if l_values < 3 and r_values >= 3 then right_turn
 if l_values < 3 and r_values < 3 then backward

The start and end arguments in the for...next loops that deliver the pulses in the four navigation
routines have been modified slightly. They have also been relocated to a Navigation Routines section.
This makes adjustment of the routines’ behavior easier because they are all in one place.

Your Turn

q By further adjusting the start and end arguments of the for...next loops in the navigation routines,

you can program a variety of drop-off avoidance behaviors.

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 145

Activity #3: Boe-Bot Shadow Vehicle

For one Boe-Bot to follow another, the Boe-Bot that follows, a.k.a. the shadow vehicle, has to know how far
the lead vehicle is ahead. If the shadow vehicle is lagging behind, it has to detect this and speed up. If the
shadow vehicle is too close to the lead vehicle, it has to detect this as well and slow down. If it’s the right
distance, it can wait until the measurements indicate it’s too far or too close again.

Proportional control can be used
to accomplish this by taking the
difference between the desired
distance and the measured
distance and then adjusting the
pulse widths sent to the servos
accordingly. Figure 6.4 shows how
proportional control works. The
measured distance is subtracted
from the desired distance, which
is called the set point. By
subtracting the measured distance
from the set point distance, you
get the distance error. Adjusting
the distance to make the
measured distance equal to the
set point distance involves
multiplying the error by a number,
called the proportionality
constant, Kp.

Figure 6.4 also illustrates a specific example for the left servo and IR pair. The set point is “3;” the distance is
“5,” and the proportionality constant is Kp = 125. Starting with the circle at the left of the block diagram,
which is called a summing junction, the measured distance is subtracted from the set point distance. Since
the set point distance is “3” and the measured distance is “5,” the error value is –2. An error signal of –2
means the Boe-Bot shadow vehicle has to back away from the lead vehicle because the lead vehicle is just too
darn close! The block the error value feeds into multiplies the error by Kp = 125. So the block performs the
following operation: 125 × (-2) = –250. The summing junction on the right adds –250 to the left servo’s
center pulse width. The result is that 100 is subtracted from the left servo’s center value. The net effect is a
pulse width of 500 to the left servo, which is full-speed backward. The math for this proportional control
operation is fairly straightforward.

System

 Error = -2
Kp X error
125 X -2

Center pulse width
750

Output
adjust
-250

Left servo
output

500

Measured left
distance = 5

-
++

+

Figure 6.4: Boe-Bot proportional control block diagram.

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 4 61 4 6 • Robotics! Version 1.5

 left_width = center + (Kp × error)
 = 750 + (125 × (-2))
 = 500

The right servo and IR pair have a similar algorithm, except that the value of the output adjust is subtracted
instead of added to the center pulse width period of 750 (1.5 ms). Assuming the same measured value at the
right IR pair, the output adjust results in a pulse width of 1000. The end result is that the Boe-Bot applies a
full speed reverse pulse. This reverse pulse is part of a complex system that depends on unknown factors
relating to the lead vehicle’s motion. The idea of feedback is that the system’s output is resampled, by the
shadow Boe-Bot taking another distance measurement. Then the control loop repeats itself again and again
and again…

Programming the Boe-Bot Shadow Vehicle

Program Listing 6.3 repeats the proportional control loop just discussed with every servo pulse. In other
words, before each pulse, the distance is measured and the error signal is determined. Then the error is
multiplied by Kp, and the resulting value is added/subtracted to/from the pulse widths to the left/right servos.

q Run Program Listing 6.3.

q Point the Boe-Bot at an 8 ½ × 11” sheet of paper held in front of it as though it’s a wall-obstacle. The

Boe-Bot should maintain a fixed distance between itself and the sheet of paper.

q Try rotating the sheet of paper slightly. The Boe-Bot should rotate with it.

q Try using the sheet of paper to lead the Boe-Bot around. The Boe-Bot should follow it.

' Robotics! v1.5, Program Listing 6.3: Shadow Vehicle
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------
 ' Constants
 Kp_r con 125 ' Right servo proportional constant.
 Kp_l con 125 ' Left servo proportional constant.
 set_point con 3 ' Set distance to a value between 0 & 5.
 ' Variables
 counter var nib ' For...next loop index variable.
 l_values var word ' Store L sensor vals for processing.
 r_values var word ' Store R sensor vals for processing.
 l_IR_freq var word ' Stores L IR freqs from lookup table.
 r_IR_freq var word ' Stores R IR freqs from lookup table.

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 147

'----- Initialization ------------

 output 13 ' Declare outputs.
 output 12
 output 2
 output 7
 output 1

 freqout 2,500,3000 ' Beep at startup.

'----- Main Routine --------------

main: ' Main routine

 gosub check_sensors ' Get distance values for each sensor

 l_values = kp_l * (set_point - l_values) ' Left proportional control.
 r_values = kp_r * (set_point - r_values) ' Right proportional control.

 pulsout 13,750 + l_values ' Pulse servos
 pulsout 12,750 - r_values

goto main ' Infinite loop.

'----- Subroutine(s) -------------

check_sensors:

 l_values = 0 ' Set distances to 0.
 r_values = 0
 ' Take 5 measurements for distance at each IR pair. If you fine tuned your
 ' frequencies in Activity #2, insert them in the lookup tables.

 for counter = 0 to 4
 check_left_sensors:
 lookup counter,[37500,38250,39500,40500,41000],l_IR_freq
 freqout 7,1,l_IR_freq
 l_values.lowbit(counter) = ~in8

 check_right_sensors:
 lookup counter,[37500,38250,39500,40500,41000],r_IR_freq
 freqout 1,1,r_IR_freq
 r_values.lowbit(counter) = ~in0

 next

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 4 81 4 8 • Robotics! Version 1.5

 l_values = ncd l_values ' Value (0 to 5) for distance depending on MSB.
 r_values = ncd r_values

return

How the Shadow Vehicle Program Works

Program Listing 6.3 declares three constant aliases, Kp_r, Kp_l, and set_point using the con directive.
Everywhere you see set_point, it’s actually the number “3” (a constant). Likewise, everywhere you see either
Kp_r or Kp_l in the program, the value is actually the number 125. The convenient thing about declaring
aliases for these constants is that when the alias declaration is changed, all instances of the alias are changed
throughout the entire program. For example, by changing the Kp_l con directive from 125 to 100, every
instance of Kp_l in the entire program changes from 125 to 100. This is exceedingly useful for experimenting
with and tuning the right and left proportional control loops.

declarations:
 Kp_r con 125
 Kp_l con 125
 set_point con 3

The first thing the main routine does is call the check_sensors subroutine. After the check_sensors
subroutine is finished, l_values and r_values each contain a number corresponding to the zone in which
an object was detected for both the left and right IR pairs.

main:

 gosub check_sensors

The next two lines of code implement both error and proportional calculations for each servo. The error
calculation for each side is the subtraction within the parenthesis and the proportional is the multiplication of
Kp_l and Kp_r by the terms in parenthesis.

 l_values = kp_l * (set_point - l_values)
 r_values = kp_r * (set_point – r_values)

The output adjust or drive calculations are nested in the pulsout period arguments. No pause period
was included because it takes 10 ms (plus some processing time) just to run the 10 frequency sweep values.

 pulsout 13,750 + l_values
 pulsout 12,750 - r_values

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 149

Then program control is returned to the main: label, and the proportional feedback loop repeats itself.

goto main

Your Turn

Figure 6.5 shows a lead Boe-Bot followed by a
shadow Boe-Bot. The lead Boe-Bot is running a
modified version of Program Listing 5.3: IR
Roaming, and the shadow Boe-Bot is running
Program Listing 6.3: Shadow Vehicle.
Proportional control makes the shadow Boe-
Bot a very faithful follower. One lead Boe-Bot
can string along a chain of 6 or 7 Boe-Bots. Just
add the lead Boe-Bot’s side panels and tailgate
to the rest of the shadow Boe-Bots in the chain.

q If you are part of a class, mount paper

panels on the tail and both sides of the lead
Boe-Bot as shown in Figure 6.5.

q If you are not part of a class (and only have

one Boe-Bot) the shadow vehicle will follow
a piece of paper or your hand just as well
as it follows a lead Boe-bot.

q Program the lead Boe-Bot for object avoidance using Program Listing 5.3 with these modifications to the

four Navigation Routines:

q Increase all pulse width period arguments that are 500 to 650.
q Reduce all pulse width period arguments that are 1000 to 850.

q The Shadow Boe-Bot should be running Program Listing 6.3 without any modifications.

q With both Boe-Bots running their respective programs, place the shadow Boe-Bot behind the lead Boe-

Bot. The shadow Boe-Bot follows at a fixed distance, so long as it is not distracted by another object
such as a hand or a nearby wall.

Figure 6.5: Lead and shadow Boe-Bots.

Lead
Boe-Bot

Shadow
Boe-Bot

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 5 01 5 0 • Robotics! Version 1.5

You can adjust the set points and proportionality constants to change the shadow Boe-Bot’s behavior. Use
your hand or a piece of paper to lead the shadow Boe-Bot while doing these exercises:

q Try running Program Listing 6.3 using values of kp_r and kp_l constants, ranging from 50 to 150. Note

the difference in how responsive the Boe-Bot is when following an object.

q Try making adjustments to the value of the set_point constant. Try values between from 1 to 4. This

will have a significant effect on the Boe-Bot’s tendency to correct forward or backward. When set_point
is 1 or 4, kp_r and kp_l should be about 60. When set_point is 2 or 3, set_point can be 125.

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 151

A technique frequently used in electronics called frequency sweep was
introduced. The Boe-Bot was programmed to run a frequency sweep
on the IR detectors, which have built-in bandpass filters. Each
bandpass filter has a center frequency of 38.5 kHz. The frequency
response of each bandpass filter was used to indicate the distance of
objects detected by the filter.

Closed-loop feedback and proportional control also were introduced. Proportional control in a closed-loop
system is an algorithm where the error is multiplied by a proportionality constant to determine the system’s
output. The error is the measured system output subtracted from the set point. For the Boe-Bot, both
system output and set point were in terms of distance. The BASIC stamp was programmed in PBASIC to
perform this operation in discrete time by taking repeated samples and recalculating the output adjust. Every
20 ms, the Boe-Bot re-sampled the distance and calculated a servo output proportional to the error signal,
which was the desired distance subtracted from the measured distance.

Real World Examples

Filters are used in a variety of applications from radio, television, cell phone communication, and high-fi audio
to, of all things, IR communication. A wide variety of filters are available with many different frequency
response characteristics. Mechatronics, analog and digital electronics, and even mechanics feature many
electronic filter applications and design techniques. One mechatronics example of where a filter would come
in handy is a vibration detector. Assuming certain frequencies of vibration could harm the moving parts of a
machine, a sensor feeding electronic sensor output to a filter could be used to always look for vibration at
this frequency. When the vibration is detected, the filter passes the signal through to a subsystem that
applies automatic correction.

Speaking of automatic correction, proportional control is the beginning of an entire class of closed-loop
feedback control applied to a variety of industrial, electronic, and mechatronic systems. On-off control is the
first line of defense in keeping a system such as a fluid tank, a pressure system or a temperature system at a
preset level. Proportional control is the second line of defense. Then comes various mixtures of
proportional, integral and derivative control introduced in the Stamps in Class Industrial Control text,
available from www.stampsinclass.com.

Boe-Bot Application

IR object detection can now be used to determine distance as well as presence of an object. Add this feature
to detection of light intensity, and tactile detection of objects, and the Boe-Bot’s ability to perceive its world
is significantly increased. This text also introduced a variety of navigation techniques for following various
things such as lines, lights, and other Boe-Bots. Navigation techniques for making the Boe-Bot flee from

Summary and
Applications

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 5 21 5 2 • Robotics! Version 1.5

other things, such as obstacles and drop-offs, also were introduced. Most importantly, this text
demonstrated ways of reusing navigation and sensory programming techniques introduced. The way these
techniques were used and incorporated into PBASIC programs depended on the situation at hand. The
important feature is that you are now ready to try mixing and matching sensor and navigation techniques in a
Boe-Bot competition. See Appendix I: Boe-Bot Competition Maze Rules.

A variety of other sensor, electronic and control system techniques are introduced in other Stamps in Class
texts. If you’re interested in adding to your bag of Boe-Bot tricks or have plans to compete in the
Micromouse, Sumo Robot, or Firefighting Robot competitions, you’ll be pleased with the additional techniques
and skills introduced in these texts, all available for free download from www.stampsinclass.com:

• What’s a Microcontroller: The basics of microcontrolled electronic projects with the BASIC Stamp.
PBASIC programming is used to interface the BASIC Stamp with elementary sensors and peripheral
devices.

• Basic Analog and Digital: The BASIC Stamp is becoming increasingly popular as the brain of many

intelligent electronic designs. This text introduces a variety of analog-to-digital and digital-to-
analog conversion techniques that lend themselves to use with the BASIC Stamp. Also introduced are
some of the fundamental communication protocols for use with peripheral converters.

• Earth Measurements: The BASIC Stamp can also be used at the heart of many environmental and

data logging devices. This text delves further into the world of intelligent electronic sensors and the
physics of accurate environmental measurements. Along the way, a variety of useful and clever
BASIC Stamp sensor interfaces are introduced. These concepts then are applied to microcontrolled
environments. The examples included lend themselves to further exploration into weather,
hydroponics, and a variety of other scientific endeavors.

• Industrial Control: This text uses a variety of BASIC Stamp projects as a launching pad into

fundamental principles and concepts in industrial process control. Free downloadable StampPlot
Lite software adds a unique oscilloscope type of data collection to the projects, and is particularly
useful for illustrating system response to BASIC Stamp control using the following techniques: open
loop, differential gap, proportional, integral and derivative.

Chapter #6: Determining Distance Using Frequency Sweep

Robotics! Version 1.5 • P a g e P a g e 153

Questions and Projects

Questions

1. What effect does the IR detector’s electronic filter have on its ability to detect IR reflected off
objects?

2. How does the IR detector’s electronic filter make it possible to detect an object’s distance?

3. What kind of data is necessary to fine tune the frequency sweep? What is the input variable that’s

varied? What is the output data that’s examined? What decisions are made based on the output
data?

4. What variable declaration and looping considerations would be involved in setting up a 16-value

frequency sweep for each IR pair?

5. How can distance detection be used to detect the edge of a table?

6. How can the Boe-Bot use distance detection to maintain a constant distance from a stationary
object? Is any different programming necessary for the Boe-Bot to maintain a constant distance
from a moving object?

7. Describe the proportional control feedback loop. How does this loop apply to the Boe-Bot for the

shadow vehicle exercise?

Exercises

1. If seven zones are needed, determine how many test frequencies will be required.

2. How many test frequencies would be required for 16 zones?

3. Modify Program Listing 6.3 so that the Boe-Bot can test for 16 zones per IR pair. Adjust this code so

that it maintains a 20 ms pause between servo pulses.

Chapter #6: Determining Distance Using Frequency Sweep

P a g e P a g e 1 5 41 5 4 • Robotics! Version 1.5

4. Write a segment of code that will allow the Boe-Bot to lock onto and follow a table edge. Hint:
proportional control will help in this exercise.

Projects

1. Program the Boe-Bot to follow a black stripe on a white background. Hint: A black stripe looks the
same to the IR sensors as a far away object does. This will involve modifying Program Listing 6.2 so
that it’s attracted to far-away objects.

2. Add ramping algorithms to the Program Listings 6.2 and 6.3, and test them.

3. Program the Boe-Bot to follow the edge of a black stripe. This is different from following a black

stripe with both detectors. The Boe-Bot should be looking for a transition from black to white.
When you’re done, the Boe-Bot should be able to lock onto and follow a black stripe on either its left
or right side.

4. If you succeeded in Project #3, try making a maze that’s delimited by black stripes. Hint: EEPROM

navigation will help in certain maneuvers like navigating corners. The cheese in the maze is a
flashlight pointed at the white surface. When the Boe-Bot detects the cheese, it should stop and
flash an LED on and off 10 times. A good cheese detector would be a single photoresistor circuit.

5. Challenge: Whiskers can be mounted on the Boe-Bot, and you can train it to better navigate the

black and white delimited maze in this chapter’s Project #4. The foundation for this training is
introduced in Chapter #3, Project #3.

Appendix A: Boe-Bot Parts Lists and Sources

Robotics! Version 1.5 • P a g e P a g e 155

Robotics! - Full Kit

Aside from a PC and the simple tools listed on Page 7, the
Robotics! Full Kit contains all the parts and documentation
you’ll need to complete the experiments in this text.

Robotics! – Full Kit (#28132)

Parallax Code# Description Quantity
BS2-IC BASIC Stamp II module 1
27919 BASIC Stamp Manual Version 1.9 1
28124 Robotics! Parts Kit 1
28125 Robotics! v1.5 text 1
550-00010 Board of Education Rev B 1
800-00003 Serial cable 1

Robotics! - Parts Kit

If you already have a BOE and BASIC Stamp, the Robotics! Parts Kit can also be purchased separately. As with
all Stamps in Class curriculum, the Robotics! experiments are designed for use with the Board of Education
with BASIC Stamp and the parts kit with the same name as the text. The contents of the Robotics! Parts Kit is
listed below. Replacement parts in the kit may also be ordered from http://www.stampsinclass.com.

Robotics! Parts Kit (#28124)
Parallax Code# Description Quantity

150-01030 10K Ω resistors 2
150-02210 220 Ω resistors 6
150-04710 470 Ω resistors 4
200-01031 0.01 µF capacitors 2
200-01040 0.1 µF capacitors 2
201-03080 3300µF capacitor 1
350-00006 red LEDs 2
350-00009 Photoresistors (EG&G Vactec VT935G group B) 2
350-00014 infrared receiver (Panasonic PNA4602M or eq.) 2
350-00017 infrared LEDs covered with heat shrink tubing (QT QEC113) 2

Appendix A: Boe-
Bot Parts Lists and
Sources

Appendix A: Boe-Bot Parts Lists and Sources

P a g e P a g e 1 5 61 5 6 • Robotics! Version 1.5

Robotics! Parts Kit (#28124 continued)
Parallax Code# Description Quantity
451-00303 3-Pin Header 4
700-00010 Whisker 2
700-00015 #4 screw-size nylon washer 2
700-00049 3/8” Male-female standoff 2
800-00016 jumper wires (bag of 10) 2
900-00001 Piezospeaker 1
28133 Boe-Bot Hardware Pack

700-00002 4-40 x 3/8”machine screws 8
700-00009 1" polyethylene ball, pre-drilled 1
700-00011 o-ring tires 2
700-00013 Boe-Bot plastic machined wheels 2
700-00016 4-40 x 3/8” flathead machine screws 2
700-00022 Boe-Bot aluminum chassis 1
700-00023 1/16" x 1.5” long cotter pin 1
700-00024 4-40 locknuts 10
700-00025 13/32" rubber grommet (fits ½” hole) 1
700-00026 9/32" rubber grommet (fits 3/8” hole) 2
700-00027 1/2" double-female standoffs 4
700-00028 4-40 x 1/ 4” machine screw 8
700-00038 Battery holder with cable and barrel plug 1
900-00008 Parallax pre-modified servos 2

Board of Education Kits

The Stamps in Class curricula features different modules that depend on the BASIC Stamp and Board of
Education as a core. This core can be purchased separately.

Board of Education – Full Kit (#28102)
Parallax Code# Description Quantity
550-00008 Board of Education Rev A 1
800-00016 Pluggable wires 10
BS2-IC BASIC Stamp II module 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1

Appendix A: Boe-Bot Parts Lists and Sources

Robotics! Version 1.5 • P a g e P a g e 157

Board of Education Kit (#28150)
Parallax Code# Description Quantity
550-00008 Board of Education Rev A 1
800-00016 Pluggable wires 6

Robotics! and BASIC Stamp Documentation

The documentation included with the Robotics! Full Kit is also available separately.

Robotics! Documentation
Parallax Code# Description Internet Availability?
27919 BASIC Stamp Manual Version 1.9 http://www.stampsinclass.com
28125 Robotics! v1.5 http://www.stampsinclass.com

Parallax Distributors

The Parallax distributor network serves approximately 40 countries worldwide. A portion of these
distributors are also Parallax-authorized “Stamps in Class” distributors – qualified educational suppliers.
Stamps in Class distributors normally stock the BASIC Stamp and Board of Education (#28102 and #28150).
Several electronic component companies are also listed for customers who wish to assemble their own
Robotics Parts Kit.

Country Company Notes
United States Parallax, Inc.

3805 Atherton Road, Suite 102
Rocklin, CA 95765 USA
(916) 624-8333, fax (916) 624-8003
http://www.stampsinclass.com
http://www.parallaxinc.com

Parallax and Stamps in Class source.
Manufacturer of the BASIC Stamp.

United States Digi-Key Corporation
701 Brooks Avenue South
Thief River Falls, MN 66701
(800) 344-4539, fax (218) 681-3380
http://www.digi-key.com

Source for electronic components. Parallax
distributor. May stock Board of Education.
Excellent source for components.

Australia Microzed Computers
PO Box 634
Armidale 2350
Australia
Phone +612-67-722-777, fax +61-67-728-987
http://www.microzed.com.au

Parallax distributor. Stamps in Class distributor.
Excellent technical support.

Appendix A: Boe-Bot Parts Lists and Sources

P a g e P a g e 1 5 81 5 8 • Robotics! Version 1.5

Australia

RTN
35 Woolart Street
Strathmore 3041
Australia
Phone / fax +613 9338-3306
http://people.enternet.com.au/~nollet

Parallax and Stamps in Class distributor.

Canada HVW Technologies
300-8120 Beddington Blvd NW, #473
Calgary, AB T3K 2A8
Canada
(403) 730-8603, fax (403) 730-8903
http://www.hvwtech.com

Parallax distributor and Stamps in Class
distributor.

Germany Elektronikladen
W. Mellies Str. 88
32758 Detmold
Germany
49-5232-8171, fax 49-5232-86197
http://www.elektronikladen.de

Parallax distributor and Stamps in Class
distributor.

New Zealand Trade Tech
Auckland Head Office, P.O. Box 31-041
Milford, Auckland 9
New Zealand
+64-9-4782323, fax 64-9-4784811
http://www.tradetech.com

Parallax distributor and Stamps in Class
distributor.

United Kingdom Milford Instruments
Milford House
120 High St., S. Milford
Leeds YKS LS25 5AQ
United Kingdom
+44-1-977-683-665
Fax +44-1-977-681-465
http://www.milinst.demon.co.uk

Parallax distributor and Stamps in Class
distributor.

Appendix B: PC to Stamp Communication Troubleshooting

Robotics! Version 1.5 • P a g e P a g e 159

When Identify is selected from the Stamp Editor’s Run menu,
the expected response is:

“Information: Found BS2-IC (firmware v1.0.).”

When you get an error message instead, it can sometimes be mystifying. Here are descriptions of the most
common error messages along with some suggestions for remedying the problems associated with them. If
none of these remedies work, go back and make sure all the other instructions in Chapter #1 were followed
correctly. Still no luck? Parallax Technical Support contact information is printed on the BOE.

“Error: Basic Stamp II detected but not responding…Check power supply.” The software thinks it found
a BASIC Stamp on one of the com. ports, but when it tries to communicate with the BASIC Stamp, it gets no
response. “Check power supply” means check your battery pack and batteries.

q For troubleshooting, make sure you are using new AA Alkaline 1.5 V batteries and that they are loaded

properly into the battery pack.

q Also, make sure the barrel plug is seated into the barrel jack on the BOE.

Is the BASIC Stamp connected to the com. port the software thinks it sees it on?

q To check and adjust your com. port settings, click Edit, and select Preferences.

q Next, click the Editor Operation tab.

q The Default Com. port can be set to different values depending on which com port you think the BASIC

Stamp is connected.

There is also an AUTO setting that causes the software to search for a BASIC Stamp on all known com ports.

q After each adjustment in the Default com port settings, click OK, then try Run | Identify again.

 “Error: BASIC Stamp II not responding…Check serial cable connection. Check power supply.” This
message means that the software can’t find the BASIC Stamp. The message might state that the BASIC Stamp
was not found on a particular com port, or it might say it can’t find the BASIC Stamp on any com port.

q Check to see if your serial cable is properly connected.

Appendix B: PC to
Stamp
Communication
Trouble-shooting

Appendix B: PC to Stamp Communication Troubleshooting

P a g e P a g e 1 6 01 6 0 • Robotics! Version 1.5

q Try adjusting the com port settings as outlined for the previous error message.

“Error: BASIC Stamp IISX not responding…Check serial cable connection. Check power supply.”
Alternatively, this message might specify the BASIC Stamp II E, or P. This message means that the software is
set to look for a BASIC Stamp 2SX (or 2E or 2P) instead of a BASIC Stamp 2. This is easy to fix.

q Click Edit and select Preferences.

q Click the Editor Operation Tab.

q Change the Default Stamp Mode field so that it reads BS2 instead of BS2SX or BS2E or BS2P.

Appendix C: PBASIC Quick Reference

Robotics! Version 1.5 • P a g e P a g e 161

The Parallax BASIC Stamp Manual Version 1.9 consists of
approximately 450 pages of PBASIC command descriptions,
application notes, and schematics. The entire document is
available for download from http://www.parallaxinc.com and
http://www.stampsinclass.com in Adobe’s PDF format, but also
may be purchased by students and educational institutions.

This PBASIC Quick Reference Guide is a reduced version of BASIC Stamp II commands.

BRANCH
BRANCH offset, [address0, address1,…,address N]
Go to the address specified by offset (if in range).
• Offset is a variable / constant that specifies which of the listed address to go to (0-N).
• Addresses are labels that specify where to go.

BUTTON
BUTTON pin, downstate, delay, rate, workspace, targetstate, label
Debounce button, perform auto-repeat, and branch to address if button is in target state.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• downstate is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• delay is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• rate is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• workspace is a byte or word variable.
• targetstate is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• label is a valid label to jump to in the event of a button press.

COUNT
COUNT pin, period, result
Count cycles on a pin for a given amount of time (0 - 125 kHz, assuming a 50/50 duty cycle).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• period is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.
• result is a bit, nibble, byte or word variable.

DATA
DATA {pointer} DATA {@location ,} {WORD} {data}{(size)} {, { WORD} {data}{(size)}...}
Store data in EEPROM before downloading PBASIC program.

Appendix C: PBASIC
Quick Reference

Appendix C: PBASIC Quick Reference

P a g e P a g e 1 6 21 6 2 • Robotics! Version 1.5

• pointer is an optional undefined constant name or a bit, nibble, byte or word variable which is assigned
the value of the first memory location in which data is written.

• location is an optional constant, expression or a bit, nibble, byte or word variable which designates the
first memory location in which data is to be written.

• word is an optional switch which causes DATA to be stored as two separate bytes in memory.
• data is an optional constant or expression to be written to memory.

DEBUG
DEBUG outputdata{,outputdata...}
Send variables to PC for viewing.
• outputdata is a text string, constant or a bit, nibble, byte or word variable. If no formatters are specified

DEBUG defaults to ascii character display without spaces or carriage returns following the value.

DTMFOUT
DTMFOUT pin, {ontime, offtime,}[key{,key...}]
Generate DTMF telephone tones.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• ontime and offtime are constants, expressions or bit, nibble, byte or word variables in the range 0..65535.
• key is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

END
END
• Sleep until the power cycles or the PC connects. Power consumption is reduced to approximately 50 µA.

FOR...NEXT
FOR variable = start to end {stepVal} …NEXT
Create a repeating loop that executes the program lines between FOR and NEXT, incrementing or
decrementing variable according to stepVal until the value of the variable passes the end value.

• Variable is a bit, nib, byte, or word variable used as a counter.
• Start is a variable or constant that specifies the initial value of the variable.
• End is a variable or constant that specifies the end value of the variable. When the value of the variable

passes end, the FOR . . . NEXT loop stops executing and the program goes on to the instruction after NEXT.
• StepVal is an optional variable or constant by which the variable increases or decreases with each

iteration through the FOR / NEXT loop. If start is larger than end, PBASIC2 understands stepVal to be
negative, even though no minus sign is used.

Appendix C: PBASIC Quick Reference

Robotics! Version 1.5 • P a g e P a g e 163

FREQOUT
FREQOUT pin, milliseconds, freq1 {,freq2}
Generate one or two sine waves of specified frequencies (each from 0 - 32767 Hz).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range of 0..15.
• milliseconds is a constant, expression or a bit, nibble, byte or word variable.
• freq1 and freq2 are constant, expression or bit, nibble, byte or word variables in the range 0..32767

representing the corresponding frequencies.

GOSUB
GOSUB addressLabel
Store the address of the next instruction after GOSUB, then go to the point in the program specified by
addressLabel.
• AddressLabel is a label that specifies where to go.

GOTO
GOTO addressLabel
Go to the point in the program specified by addressLabel.
• AddressLabel is a label that specifies where to go.

HIGH
HIGH pin
Make the specified pin output high (write 1s to the corresponding bits of both DIRS and OUTS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

IF...THEN
IF condition THEN addressLabel
Evaluate condition and, if true, go to the point in the program marked by addressLabel.
• Condition is a statement, such as “x=7” that can be evaluated as true of false.
• AddressLabel is a label that specifies where to go in the event that the condition is true.

INPUT
INPUT pin
Make the specified pin an input (write a 0 to the corresponding bit of DIRS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

LOOKDOWN
LOOKDOWN value, {??,} [value0, value1,... valueN], variable
• value is a constant, expression or a bit, nibble, byte or word variable.

Appendix C: PBASIC Quick Reference

P a g e P a g e 1 6 41 6 4 • Robotics! Version 1.5

• ?? is =, <>, >, <, <=, =>. (= is the default).
• value0, value1, etc. are constants, expressions or bit, nibble, byte or word variables.
• variable is a bit, nibble, byte or word variable.

LOOKUP
LOOKUP index, [value0, value1,... valueN], variable
Look up the value specified by the index and store it in a variable. If the index exceeds the highest index value
of the items in the list, variable is unaffected. A maximum of 256 values can be included in the list.
• index is a constant, expression or a bit, nibble, byte or word variable.
• value0, value1, etc. are constants, expressions or bit, nibble, byte or word variables.
• variable is a bit, nibble, byte or word variable.

LOW
LOW pin
Make pin output low (write 1 to the corresponding bit of DIRS and 0 to the corresponding bit of OUTS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

NAP
NAP period
Nap for a short period. Power consumption is reduced to 50 µA (assuming no loads).
• period is a constant, expression or a bit, nibble, byte or word variable in the range 0..7 representing 18ms

intervals.

OUTPUT
OUTPUT pin
Make the specified pin an output (write a 1 to the corresponding bit of DIRS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

PAUSE
PAUSE period
Pause execution for 0–65535 milliseconds.
• period is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.

PULSIN
PULSIN pin, state, variable
Measure an input pulse (resolution of 2 µs).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• state is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.

Appendix C: PBASIC Quick Reference

Robotics! Version 1.5 • P a g e P a g e 165

• variable is a bit, nibble, byte or word variable.
Measurements are in 2uS intervals and the instruction will time out in 0.13107 seconds.

PULSOUT
PULSOUT pin, period
Output a timed pulse by inverting a pin for some time (resolution of 2 µs).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• period is a constant, expression or a bit, nibble, byte or word
• variable in the range 0..65535 representing the pulse width in 2uS units.

PWM
PWM pin, duty, cycles
Output PWM, then return pin to input. This can be used to output analog voltages (0-5V.) using a capacitor and
resistor.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• duty is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• cycles is a constant, expression or a bit, nibble, byte or word variable in the range 0..255 representing the

number of 1 ms cycles to output.

RANDOM
RANDOM variable
Generate a pseudo-random number.
• variable is a byte or word variable in the range 0..65535.

RCTIME
RCTIME pin, state, variable
Measure an RC charge/discharge time. Can be used to measure potentiometers.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• state is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• variable is a bit, nibble, byte or word variable.

READ
READ location, variable
Read EEPROM byte into variable.
• location is a constant, expression or a bit, nibble, byte or word variable in the range 0..2047.
• variable is a bit, nibble, byte or word variable.

RETURN

Appendix C: PBASIC Quick Reference

P a g e P a g e 1 6 61 6 6 • Robotics! Version 1.5

Return from subroutine – sends the program back to the address (instruction) immediately following the most
recent GOSUB.

REVERSE
REVERSE pin
If pin is an output, make it an input. If pin is an input, make it an output.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

SERIN
SERIN rpin{\fpin}, baudmode, {plabel,} {timeout, tlabel,} [inputdata]
Serial input with optional qualifiers, time-out, and flow control. If qualifiers are given, then the instruction will
wait until they are received before filling variables or continuing to the next instruction. If a time-out value is
given, then the instruction will abort after receiving nothing for a given amount of time. Baud rates of 300 -
50,000 are possible (0 - 19,200 with flow control). Data received must be N81 (no parity, 8 data bits, 1 stop bit)
or E71 (even parity, 7 data bits, 1 stop bit).
• rpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..16.
• fpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• baudmode is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.
• plabel is a label to jump to in case of a parity error.
• timeout is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535

representing the number of milliseconds to wait for an incoming message.
• tlabel is a label to jump to in case of a timeout.
• inputdata is a set of constants, expressions and variable names separated by commas and optionally

proceeded by the formatters available in the DEBUG command, except the ASC and REP formatters.
Additionally, the following formatters are available:

1. STR bytearray\L{\E} input a string into bytearray of length L with optional end-character of E. (0’s will fill remaining bytes).
2. SKIP L input and ignore L bytes.
3. WAITSTR bytearray{\L} Wait for bytearray string (ofL length, or terminated by 0 if parameter is not specified and is 6 bytes maximum).
4. WAIT (value {,value...}) Wait for up to a six-byte sequence.

SEROUT
SEROUT tpin{\fpin}, baudmode, {pace,} {timeout, tlabel,} [outputdata]
Send data serially with optional byte pacing and flow control. If a pace value is given, then the instruction will
insert a specified delay between each byte sent (pacing is not available with flow control). Baud rates of 300 -
50,000 are possible (0 - 19,200 with flow control). Data is sent as N81 (no parity, 8 data bits, 1 stop bit) or E71
(even parity, 7 data bits, 1 stop bit).
• tpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..16.
• fpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• baudmode is a constant, expression or a bit, nibble, byte or word variable in the range 0..60657.

Appendix C: PBASIC Quick Reference

Robotics! Version 1.5 • P a g e P a g e 167

• pace is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535 specifying a
time (in milliseconds) to delay between transmitted bytes. This value can only be specified if the fpin is not
specified.

• timeout is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535
representing the number of milliseconds to wait for the signal to transmit the message. This value can
only be specified if the fpin is specified.

• tlabel is a label to jump to in case of a timeout. This can only be specified if the fpin is specified.
• outputdata is a set of constants, expressions and variable names separated by commas and optionally

proceeded by the formatters available in the DEBUG command.

SHIFTIN
SHIFTIN dpin, cpin, mode, [result{\bits} { ,result{\bits}... }]
Shift bits in from parallel-to-serial shift register.
• dpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the data

pin.
• cpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the clock

pin.
• mode is a constant, symbol, expression or a bit, nibble, byte or word variable in the range 0..4 specifying

the bit order and clock mode. 0 or MSBPRE = msb first, pre-clock, 1 or LSBPRE = lsb first, pre-clock, 2 or
MSBPOST = msb first, post-clock, 3 or LSBPOST = lsb first, post-clock.

• result is a bit, nibble, byte or word variable where the received data is stored.
• bits is a constant, expression or a bit, nibble, byte or word variable in the range 1..16 specifying the

number of bits to receive in result. The default is 8.

SHIFTOUT
SHIFTOUT dpin, cpin, mode, [data{\bits} {, data{\bits}... }]
Shift bits out to serial-to-parallel shift register.
• dpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the data

pin.
• cpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the clock

pin.
• mode is a constant, symbol, expression or a bit, nibble, byte or word variable in the range 0..1 specifying

the bit order. 0 or LSBFIRST = lsb first, 1 or MSBFIRST = msb first.
• data is a constant, expression or a bit, nibble, byte or word variable containing the data to send out.
• bits is a constant, expression or a bit, nibble, byte or word variable in the range 1..16 specifying the

number of bits of data to send. The default is 8.

Appendix C: PBASIC Quick Reference

P a g e P a g e 1 6 81 6 8 • Robotics! Version 1.5

SLEEP
SLEEP seconds
Sleep for 1-65535 seconds. Power consumption is reduced to approximately 50 µA.
• seconds is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535 specifying

the number of seconds to sleep.

STOP
STOP
Stop the program execution until the power is reset. This command differs from SLEEP in two respects. First,
the BASIC Stamp 2 does not enter low power mode when the stop command is executed. Second, outputs
are not interrupted every 2.3 seconds.

TOGGLE
TOGGLE pin
Invert the state of a pin.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

WRITE
WRITE location, data
Write byte into EEPROM.
• location is a constant, expression or a bit, nibble, byte or word variable in the range 0..2047.
• data is a constant, expression or a bit, nibble, byte or word variable.

XOUT
XOUT mpin, zpin, [house\keyorcommand{\cycles} {, house\keyorcommand{\cycles}... }]
Generate X-10 powerline control codes. For use with TW523 or TW513 powerline interface module.
• mpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

modulation pin.
• zpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the zero-

crossing pin.
• house is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

house code A..P respectively.
• keycommand is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying

keys 1..16 respectively or is one of the commands shown for X-10 light control in the BASIC Stamp
Manual Version 1.9. These commands include lights on, off, dim and bright.

• cycles is a constant, expression or a bit, nibble, byte or word variable in the range 2..65535 specifying the
number of cycles to send. (Default is 2).

Appendix D: Building Servo Ports on the Rev. A Board of Education

Robotics! Version 1.5 • P a g e P a g e 169

Previous to July 2000, Parallax sold the Board of Education Rev
A along with Boe-Bot Kits, instead of the Board of Education
Rev B. The Board of Education Rev B has four servo ports built
into the top of it that makes connecting servos quick and easy.
If you have a Board of Education Rev A, building your own servo
ports is pretty easy. All the projects in this text were designed
so that there would be no conflict with the Rev A servo ports
introduced in this appendix. So, if you build the servo ports as
instructed here, the experiments in this text should go without
a hitch.

The servo ports we are going to make will function as replacements for servo Ports 12 and 13 on the Board of
Education Rev B. Once these servo ports are built and tested, you can leave them plugged in every activity
from Chapter #1, Activity #6 through the end of the text (Chapter #6, Activity #3). With this in mind, leaving
the servo ports on your BOE Rev A connected and not disassembling them between activities is
recommended. Any activity that features a schematic with servos connected to I/O pins P12/P13 will work
fine with this servo port design shown in Figure D.2. Likewise, whenever a picture shows servos plugged into
the BOE Rev B’s servo ports 12 and 13, Figure D.2 is the BOE Rev A substitute for the servo port wiring.

Here's how to build the servo ports onto your BOE Rev A:

Parts List:

 (1) Board of Education Rev A
 (1) 3300µF capacitor
 (2) 3-pin headers
 (2) Servos
 (Misc.) Jumper Wires

The three-pin headers in the Rev A Robotics! Kits are shown in Figure D.1 (a). Modify this three-pin header so
that the plastic holding the three pins together is in the middle of the pins as shown in Figure D.1 (b).

Appendix D:
Building Servo
Ports on the Rev A
Board of Education

Appendix D: Building Servo Ports on the Rev. A Board of Education

P a g e P a g e 1 7 01 7 0 • Robotics! Version 1.5

Figure D.1 (a) Unmodified header, and (b) modified header.

Next connect the ports to the Board of Education as shown in Figure D.2.

q Connect the 3300µF capacitor from Vdd to Vss. Make sure the shorter leg of the capacitor is plugged into

one of the two sockets labeled Vss on the 20-socket app-mod header. Also make sure that the
capacitor’s longer pin is plugged into the socket labeled Vdd on the app-mod header.

q Insert the three-pin headers into the breadboard and use jumper wires to connect Vin, Vss, P12 and P13

to the sockets on the white breadboard EXACTLY AS SHOWN in Figure D.2.

Figure D.2: Servo Port Wiring.

S TA MP S CLA SS
in

Vdd VssVR1

X1
2
1

20
19

V
d
d

V
s
s

V
s
s

V
i
nP1 P5 P11 P15

P0 P4 P10 P14

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3 nc

Rev A

- +

3300 µF
cap.

Appendix D: Building Servo Ports on the Rev. A Board of Education

Robotics! Version 1.5 • P a g e P a g e 171

Next, the servos can be connected to the servo ports. The upper three-pin header is equivalent to servo port
13 and the lower three-pin header is equivalent to servo port 12.

!

Make sure to follow the servo wiring color codes shown in Figure D.3. Failure to
do so could result in damaged servos, a damaged BASIC Stamp, or both.

Figure D.3: Color codes for plugging the servos into the servo ports.

S TA MP S CLA SS
in

Vdd VssVR1

X1
2
1

20
19

V
d
d

V
s
s

V
s
s

V
i
nP1 P5 P11 P15

P0 P4 P10 P14

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3 nc

Rev A

- +

3300 µF
cap.

White

Red

Black

White

Red

Black

Appendix E: Board of Education Rev. A Voltage Regulator Upgrade Kit

Robotics! Version 1.5 • P a g e P a g e 173

Prior to June 1999, Parallax produced the Board of Education
with a LM7805CV voltage regulator. This voltage regulator is
fine for general use, but will cause the BASIC Stamp to reset
when used with 6-volt power supplies and higher current
devices like servos or stepper motors. If your Board of
Education has the LM7805CV voltage regulator, contact Parallax

and ask for a free BOE Voltage Regulator Upgrade Kit (stock code #28151). This Appendix includes instructions
to remove the LM7805CV voltage regulator and replace it with the low-drop LM2940. Parallax will send it out
for free by U.S. Mail.

The voltage regulator is the only component that has a machine screw and nut sticking up on the circuit board
located right next to the “Stamps in Class” logo. To put in the new LM2940 regulator, all you need is a small
soldering iron, wire cutters, screwdriver and a little solder. Replacing the 7805CV with an LM2940 only takes a
few minutes and is well worth the time. Here’s how to do it.

Step 1: Remove the 7805 Voltage Regulator

Using your small wire cutter, cut the leads of the existing 7805 regulator off flush with the case of the
regulator as shown in Figure E.1. When you're done with this step you should have leads still attached to your
circuit board. You don't have to unsolder anything.

Figure E.1: Remove the 7805 regulator by cutting the leads close
to the regulator case and unscrewing the small nut.

Appendix E: Board
of Education Rev A
Voltage Regulator
Upgrade Kit

Appendix E: Board of Education Rev. A Voltage Regulator Upgrade Kit

P a g e P a g e 1 7 41 7 4 • Robotics! Version 1.5

Step 2: Install LM2940 Regulator

Put the LM2940 regulator where the old one was, trim the leads off a little and put the screw back in and
tighten the nut. Line it up just like the old one was so the leads from the new regulator are laying on top of the
ones you left when you cut out the old 7805 regulator. Figure E.2 shows what things should look like at this
point.

Figure E.2: Put the LM2940 in place of the 7805. The leads will line
up with the old leads of the 7805.

Step 3: Solder Regulator on Board of Education

Heat up the soldering iron if you haven’t done so yet and get ready to solder the new leads from the LM 2940
onto the old leads underneath them. Before you solder, trim the leads of the LM 2940-5 so they don’t extend
beyond the old leads. Solder the leads together and you are finished. Be sure you tighten the 4-40 screw and
nut that mount the regulator to the Board of Education.

Appendix F: Breadboarding Rules

Robotics! Version 1.5 • P a g e P a g e 175

Figure F.1 shows the circuit symbols used in the experiments
along with where to find them on the Board of Education Rev A.
The symbol for Vdd is the positive 5-volt supply for the BASIC
Stamp and the Board of Education. There are four sockets
along the top side of the breadboard to the left for making
connections to Vdd.

Next, the ground symbol is used for Vss. This is the reference terminal for taking measurements, and it's
considered to be 0 volts compared to all other voltages on the Board of Education. The four sockets for
connecting jumper wires to Vss are along the top of the breadboard to the right.

Appendix F:
Breadboarding
Rules

P0

Vdd

Vss

P2

P15

Figure F.1: Board of
Education Circuit Symbols
and where to find them on
the Board of Education.
Also shown is how each row
of 5 sockets on the
breadboard is electrically
connected underneath.

P1

Rows of 5 sockets
are connected
underneath the
breadboard.

Appendix F: Breadboarding Rules

P a g e P a g e 1 7 61 7 6 • Robotics! Version 1.5

There is a row of 15 sockets along the left side of the breadboard for connecting to the BASIC Stamp I/O pins.
Each I/O pin has a label. I/O pin P0 is connected to the bottom left socket. Pin P1 is the next socket up, and
above that socket is the connection to pin P2, and so on through pin P15 at the top left.

Figure F.1 also shows some samples of five-socket-wide rows that are electrically connected underneath the
breadboard. There are 34 of these rows arranged in the two columns on the breadboard. If you want to
connect two jumper wires to each other, you can just plug them both into the same row of five. Then the
wires are electrically connected. Likewise, if you want to connect one or more wires to the terminal of a part,
just plug them into the same row on the breadboard and they'll be connected. Four sockets at a time can be
added for Vdd, Vin, or Vss by just running a jumper wire from a socket, such as Vdd, to an empty row on the
breadboard.

Figure F.2 shows the BOE Rev B breadboard. Along with Vdd and Vss, three sockets are also added for
accessing Vin, the BOE’s unregulated power source. Whatever voltage is plugged into the BOE is what appears
at the Vin sockets. If the power supply is the four 1.5 V AA batteries in the Boe-Bot battery pack, Vin will be at
6 V. If the power supply is a 9 V battery connected to the battery clips on the BOE, Vin will be 9 V. If a wall
mount 7.5 V power supply is connected to the BOE’s power plug, Vin should be 7.5 V. However, be careful of
wall mount power supplies. Their voltage output varies with the current draw placed on the supply.

X3
Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2
Figure F.2: Another look at the connections underneath the breadboard, this time on
the BOE Rev B.

Appendix H: Resistor Color Codes

Robotics! Version 1.5 • P a g e P a g e 177

Figure G.2 shows a drawing of a resistor below its circuit
symbol. The circuit symbol typically has the resistance value
written below or next to it. The colored stripes on the part
drawn below the symbol indicate its value, which is measured in
Ohms. The omega symbol (Ω) is used to denote the Ohm.

Most common types of resistors have colored bands that indicate their value. The resistors that we’re using
in this series of experiments are typically “1/4 watt, carbon film, with a 5% tolerance.” If you look closely at
the sequence of bands you’ll notice that one of the bands (on an end) is gold. This is band #4, and the gold
color designates that it has a 5% tolerance.

The resistor color code is an industry

standard in designating the resistance of a resistor. Each color band represents a number and the order of
the color band will represent a number value. The first two color bands indicate a number. The third color
band indicates the multiplier (the number of trailing zeros). The fourth band indicates the tolerance of the
resistor +/- 5, 10 or 20%.

Table G.1: Variable Declaration Sizes

Color 1st Digit 2nd Digit Multiplier Tolerance
black 0 0 1
brown 1 1 10

red 2 2 100
orange 3 3 1,000
yellow 4 4 10,000
green 5 5 100,000
blue 6 6 1,000,000

violet 7 7 10,000,000
gray 8 8 100,000.000
white 9 9 1,000,000,000
gold 5%
silver 10%

no color 20%

Appendix G:
Resistor Color
Codes

Figure G.2: Resistor Circuit Symbol
and Corresponding Component 470

Appendix H: Resistor Color Codes

P a g e P a g e 1 7 81 7 8 • Robotics! Version 1.5

A resistor has the following color bands:

Band #1. = Red
Band #2. = Violet
Band #3. = Yellow
Band #4. = Gold

Looking at our chart above, we see that red has a value of 2.

So we write: “2.”
Violet has a value of 7.
So we write: “27”

Yellow has a value of 4.
So we write: “27 and four zeros” or “270000.”

This resistor has a value of 270,000 ohms (or 270 kΩ) and a tolerance of 5%.

Appendix H: Tuning IR Distance Detection

Robotics! Version 1.5 • P a g e P a g e 179

Finding the Right Frequency Sweep Values

Fine tuning the Boe-Bot’s distance detection involves
determining which frequency is most reliable for each zone for
each IR pair.

Note
This appendix features a method of determining the best frequencies for determining given distances
using spreadsheets. This activity is takes time and patience, and is only recommended if your distance
sensing is severely out of calibration. It involves collecting frequency sweep data and using it to
determine the most reliable values for detecting particular distances.

q Point both the IR LEDs and detectors straight forward.

q Place the Boe-Bot in front of a wall with a white sheet of paper as the IR target.

q Place the Boe-Bot so that its IR LEDs are 1 cm. away from the paper target. Make sure the front of the

Boe-Bot is facing the paper target. Both IR LEDs and detectors should be pointed directly at the paper.

IR Fine Tuning Program

Program Listing H.2 performs a frequency sweep on the IR detector and displays the Data. Although the
techniques used are similar to other programs, it has one unique feature. The Basic Stamp is programmed to
wait for you to press the enter key.

q Enter and run Program Listing H.2, but do not disconnect the Boe-Bot from the serial cable.

' Robotics! v1.5, Program Listing H.2: IR Frequency Sweep
' {$Stamp bs2} ' Stamp Directive.

'----- Declarations --------------

 l_values var bit ' Store R sensor vals for processing.
 r_values var bit ' Store L sensor vals for processing.
 IR_freq var word ' Stores L IR freqs from lookup table.

'----- Initialization ------------

 output 2 ' Set all I/O lines sending freqout
 output 7 ' signals to function as outputs
 output 1

Appendix H: Tuning
IR Distance
Detection

Appendix H: Tuning IR Distance Detection

P a g e P a g e 1 8 01 8 0 • Robotics! Version 1.5

 freqout 2, 2000, 3000 ' Declare a variable for counting.
 low 12 ' Set P12 and 13 to output-low.
 low 13

'----- Main Routine --------------

main:

 ' Display message to press enter when ready and wait for carriage return.

 debug cr,"Press enter when ready. ", cr
 serin 16,16468,[wait(cr)]

 ' After carriage return, display table headings.

 debug "IR left Right ", cr
 debug "Freq Sensor Sensor ", cr
 debug "--------------------------", cr

 ' Take multiple frequency measurements.

 for ir_freq = 30500 to 46500 step 1000

 check_sensors: ' Check Sensors

 l_values = 0
 r_values = 0

 check_left_sensors:
 freqout 7,1,IR_freq
 l_values = ~in8
 pause 10

 check_right_sensors:
 freqout 1,1,IR_freq
 r_values = ~in0
 pause 10

 ' Display each frequency measurement before continuing to the next loop.

 debug dec5 IR_freq, " ",bin1 l_values, " ", bin1 r_values, cr

 next

goto main ' Back to main & repeat the process.

Appendix H: Tuning IR Distance Detection

Robotics! Version 1.5 • P a g e P a g e 181

q Click the upper of the two window panes shown in

Figure H.3.

q Press the Enter key. The frequency response data
will appear as shown in the figure.

The BASIC Stamp has been programmed to make the
Debug Terminal display a “1” if an object was detected
and a “0” if an object was not detected. Figure H.3 shows
that the left sensor’s region of good signal response is
between 36500 and 40500. For the left sensor, the
frequency response is strong between 37500 and 41500.

q Modify the for...next loop in Program Listing H.2

so that it steps in increments of 250 and includes the
upper and lower limits of both detectors. In the
example shown in Figure H.3, the start, end and
step values of the for...next loop would be
modified as follows:

for ir_freq = 36500 to 41500 step 250

q Re-run your modified Program Listing H.2, and press enter again.

q Record the data for left and right sides in separate spreadsheets.

q Press the Enter key again and record the next set of data points.

q Repeat this process three more times. When finished, you will have five sets of data points for each

sensor in separate spreadsheets for this one frequency.

q Back the Boe-Bot up 2.5 cm. Now your Boe-Bot’s IR detectors will be 5 cm. from the paper target.

q Record five more data sets at this distance.

q Keep on backing up the Boe-Bot by 2.5 cm. at a time and recording the five frequency sweep data

sets between each distance adjustment.

Figure H.3 Debug of Frequency Data.

Upper
Pane

Lower
Pane

Appendix H: Tuning IR Distance Detection

P a g e P a g e 1 8 21 8 2 • Robotics! Version 1.5

q When the Boe-Bot has been backed up by 20 cm., the frequency sweep will display mostly, if not all
zeros. When the frequency sweep is all zeros, it means no object is detected at any frequency within
the sweep.

By careful scrutiny of the spreadsheets and process of elimination, you can determine the optimum
frequency for each IR pair for each zone. Customizing for up to eight zones can be done without any
restructuring of the Boe-Bot navigational routines. If you were to customize for 15 zones, this would
entail 30 one millisecond freqout commands. That won’t gracefully fit between servo pulses. One
solution would be to take 15 measurements every other pulse.

How to determine the best frequencies for the left sensor is discussed here. Keep in mind you’ll have to
repeat this process for the right sensor. This example assumes you are looking for six zones (zero
through five).

q Start by examining the data points taken when the Boe-Bot was furthest from the paper target.

There probably won’t be any sets of data points that are all ones at the same frequency. Check the
data points for the next 2.5 cm. towards the paper target. Presumably, you will see a set of four or
five ones at a particular frequency. Note this frequency as a reliable measurement for the dividing
line between Zone 0 and Zone 1.

q At each of the remaining five distances, find a frequency for which the output values have just

become stable.

For example, at 15 cm., three different frequencies might show five ones. If you look back to the 17.5 cm.
mark, two of these frequencies were stable, but the other was not. Take the frequency that was not stable at
17.5 cm. but was stable at 15 cm. as your most reliable frequency for this distance. Now, this example has
determined the frequencies that can be used to separate Zones 5 and 4 and Zones 4 and 3. Repeat this
process for the remaining zone partitions.

How the Frequency Sweep Program Works

Two bit variables, l_values and r_values, are declared to temporarily store each IR detector output. A
variable named IR_freq is declared for indexing a for…next loop.

 l_values var bit
 r_values var bit
 IR_freq var word

Appendix H: Tuning IR Distance Detection

Robotics! Version 1.5 • P a g e P a g e 183

The first debug command in the main routine is nothing new. It
displays a message for the user to press the enter key when ready
(to run a frequency sweep). The three debug statements that
follow are nothing new either. However, the command, serin
16,16468,[wait(cr)] is new. Serin is a multipurpose
command designed to receive asynchronous serial messages from
other electronic devices.

 debug cr,"Press enter when ready. ", cr
 serin 16,16468,[wait(cr)]

 debug "IR left Right ", cr
 debug "Freq Sensor Sensor ", cr
 debug "--------------------------", cr

The BASIC Stamp uses this particular serin command to listen
for a serial message from the PC on I/O pin P16, which is the Sin
line connected to the computer’s data transmit (DTR) line via the
serial cable. The baudmode argument is 16468, which was
selected from a table in the Serin command section of the BASIC
Stamp Manual. The value 16468 tells the BASIC Stamp to
communicate with the Debug Terminal. The specification for the
Debug Terminal is 9600 bits per second (bps), 8-bits, no parity, one
stop bit. These arguments are explained in detail in the BASIC
Stamp Manual.

It’s most common for serin to feature a variable between the
square brackets. This way, data sent from the PC to the BASIC
Stamp can be saved and used by the application. In this case, the
argument wait(cr) does not save any data. All it does is tell the
serin command to wait for a carriage return. The serin
command does nothing until the carriage return is received.
When the serin command receives the carriage return, the
program moves on to the next command. In other words, serin
allows the program to continue running after it receives the
carriage return. The result of this command is that you can take
your time positioning the Boe-Bot in front of its paper target,
then hit the carriage return when you’re ready for more
frequency sweep data.

Serial Communication

Serial communication is one of the most
common ways for electronic devices to
exchange data. Serial communication comes in
two flavors, synchronous and asynchronous.

The most common form of synchronous serial
communication features a clock line and a data
line. When the device sending the data has
made a new binary value available at its data
output, it sends a pulse via the clock output
signaling that the data is ready.

Asynchronous serial communication can be
accomplished with just one line for data
transmission. Both the device sending and the
device receiving the information know at what
speed the data will be transmitted. Commonly
referred to as the baud rate, this speed is
measured in bits per second or bps.

Asynchronous serial messages also have a start
bit, a fixed number of data bits, a stop bit, and
sometimes a parity bit. The stop bit is a binary
value that signifies the resting state between
data packets. When the binary value on the
data line changes from the resting state, it
signifies a start bit. Since both the transmitting
device and the receiving device know the baud
rate, the transmitter knows exactly how long to
send the start bit for before sending the first
data bit. Likewise, the receiving device knows
exactly how long to wait after the start bit
before recording the first data bit.

The BASIC Stamp Manual does a great job of
explaining the finer points of both synchronous
and asynchronous serial communication. For
more information about how synchronous
serial communication works, consult the
shiftin and shiftout commands. For
more information about how asynchronous
serial communication works, consult the
serin and serout commands.

Appendix H: Tuning IR Distance Detection

P a g e P a g e 1 8 41 8 4 • Robotics! Version 1.5

Before it’s modified, the for...next loop sweeps the value of IR_freq from 30500 to 46500 in steps of
1000. The freqout commands within the for...next loop use the value of IR_freq to set their
frequency arguments.

As with the previous program examples, the value of the IR detector’s output is inverted using the NOT
operator (~), then stored in a bit variable, such as l_values for the left IR pair.

for ir_freq = 30500 to 46500 step 1000

 check_left_sensors:
 freqout 7,1,IR_freq
 l_values = ~in8
 pause 10

 check_right_sensors:
 freqout 1,1,IR_freq
 r_values = ~in0
 pause 10

Next, the debug output values are printed in a format that displays as a table in the Debug Terminal. To make
it display properly, blank spaces are inserted between each value using the “ “ message. The width
of each number is also controlled by formatters such as bin5 and dec1.

 debug dec5 IR_freq, " ",bin1 l_values, " ", bin1 r_values, cr

 next

Your Turn

q If you succeeded in fine tuning five measurements and time permits, try increasing the resolution to eight

measurements. Save your data for both methods.

Appendix I: Boe-Bot Maze Competition Rules

Robotics! Version 1.5 • P a g e P a g e 185

If you're planning a competition for autonomous robots, these
rules are provided courtesy of Seattle Robotics Society.

Contest #1: Robot Floor Exercise

Purpose

The floor exercise competition is intended to give robot inventors an opportunity to show off their robots or
other technical contraptions.

Rules

The rules for this competition are quite simple. A 10-foot-by-10-foot flat area is identified, preferably with
some physical boundary. Each contestant will be given a maximum of five minutes in this area to show off
what it can do. The robot's controller can talk through the various capabilities and features of the robot. As
always, any robot that could damage the area or pose a danger to the public will not be allowed. Robots need
not be autonomous, but it is encouraged. Judging will be determined by the audience, either indicated by
clapping (the loudest determined by the judge), or some other voting mechanism.

Contest #2: Line Following Rules

Objective:

To build an autonomous robot that begins in Area "A" (at position "S"), travels to Area "B" (completely via the
line), then travels to the Area "C" (completely via the line), then returns to the Area "A" (at position "F"). The
robot that does this in the least amount of time (including bonuses) wins. The robot must enter areas "B" and
"C" to qualify. The exact layout of the course will not be known until contest day, but it will have the three
areas previously described.

Skills Tested:

The ability to recognize a navigational aid (the line) and use it to reach the goal.

Appendix I: Boe-
Bot Competition
Maze Rules

Appendix I: Boe-Bot Maze Competition Rules

P a g e P a g e 1 8 61 8 6 • Robotics! Version 1.5

Maximum Time to Complete Course

Four minutes.

Example Course

All measurements in the example course are approximate. There is a solid line dividing Area "A" from Area "T"
at position "F.” This indicates where the course ends. The line is black, approximately 3/4 inches wide and
spaced approximately two feet from the walls. All curves have a radius of at least one foot and at most three
feet. The walls are 3 1/2 inches high and surround the course. The floor is white and made of either paper or
Tyvec. Tyvec is a strong plastic used in mailing envelopes and house construction.

Positions "S" and "F" are merely for illustration and are not precise locations. A Competitor may place the
robot anywhere in Area "A,” facing in any direction when starting. The robot must be completely within Area
"A.” Areas "A,” "B" and "C" are not colored red on the actual course.

Appendix I: Boe-Bot Maze Competition Rules

Robotics! Version 1.5 • P a g e P a g e 187

Scoring

Each contestant’s score is calculated by taking the time needed to complete the course (in seconds) minus
10% for each "accomplishment." The contestant with the lowest score wins.

Accomplishments Reduction
Stops in area A after reaching B and C 10%
Does not touch any walls 10%
Starts on command 10%

("Starts on command" means the robot starts with an external, non-tactile command. This could, for example,
be a sound or light command.)

Contest #3: Maze Following

Purpose

The grand maze is intended to present a test of navigational skills by an autonomous robot. The scoring is
done in such a way as to favor robots which are either brutally fast or which can learn the maze after one
pass. The object is for a robot, which is set down at the entrance of the maze, to find its way through the
maze and reach the exit in the least amount of time.

Physical Characteristics

The maze is constructed of 3/4" shop-grade plywood. The walls are approximately 24 inches high, and are
painted in primary colors with glossy paint. The walls are set on a grid with 24-inch spacing. Due to the
thickness of the plywood and limitations in accuracy, the hallways may be as narrow as 22 inches. The maze
can be up to 20-feet square, but may be smaller, depending on the space available for the event.

The maze will be set up on either industrial-type carpet or hard floor (depending on where the event is held).
The maze will be under cover, so your robot does not have to be rain proof; however, it may be exposed to
various temperatures, wind, and lighting conditions. The maze is a classical two-dimensional proper maze:
there is a single path from the start to the finish and there are no islands in the maze. Both the entrance and
exit are located on outside walls. Proper mazes can be solved by following either the left wall or the right
wall. The maze is carefully designed so that there is no advantage if you follow the left wall or the right wall.

Appendix I: Boe-Bot Maze Competition Rules

P a g e P a g e 1 8 81 8 8 • Robotics! Version 1.5

Robot Limitations

The main limit on the robot is that it be autonomous: once started by the owner or handler, no interaction is
allowed until the robot emerges from the exit, or it becomes hopelessly stuck. Obviously the robot needs to
be small enough to fit within the walls of the maze. It may touch the walls, but may not move the walls to its
advantage -no bulldozers. The judges may disqualify a robot which appears to be moving the walls excessively.
The robot must not damage either the walls of the maze, nor the floor. Any form of power is allowed as long
as local laws do not require hearing protection in its presence or place any other limitations on it.

Scoring

Each robot is to be run through the maze three times. The robot with the lowest single time is the winner. The
maximum time allowed per run is 10 minutes. If a robot cannot finish in that amount of time, the run is
stopped and the robot receives a time of 10 minutes. If no robot succeeds in finding the exit of the maze, the
one that made it the farthest will be declared the winner, as determined by the contest's judge.

Logistics

Each robot will make one run, proceeding until all robots have attempted the maze. Each robot then does a
second run through the maze, then the robots all do the third run. The judge will allow some discretion if a
contestant must delay their run due to technical difficulties. A robot may remember what it found on a
previous run to try to improve its time (mapping the maze on the first run), and can use this information in
subsequent runs-as long as the robot does this itself. It is not allowed to manually "configure" the robot
through hardware or software as to the layout of the maze.

