Writing Programs - 1

Scribbler PBASIC Programming Guide

Writing Programs

Inside the Scribbler Robot is a small computer called a BASIC Stamp® microcontroller. It
performs a list of instructions that make the Scribbler operate. With the BASIC Stamp Editor, you
can write your own list of instructions, called a program, and load it into the BASIC Stamp inside
your Scribbler Robot. These programs are written in the PBASIC programming language.

"BASE:'ugFiles‘mParaIIauIn\:hS:rither'_Fnrward.bsz E —lojx| This Guide Will ShOW you hOW tO
Q@-‘E\ﬁ\él i %d:tll\\miiiaﬁ&\@?@ﬁl@ Br& AALK | & write your first PBASIC programs
,ﬁ orward.bs: . .
"'._‘lg"‘t“"es;fwm Al ' scribbler PEASIC Programming Guide - Forward.bsZ = for your Scrlbbler RObOt. You Wlll

Egp;;‘fﬂm’fra“ _J| | prive the scribbler forward at half speed. . .
PO be able to communicate with the
(- Stamp Editor B ' [SSTAMP BS2}
S —'j " {§PERSIC 2.5} BASIC Stamp, and make the
e DEBUG "Program running!” Scribbler blink its lights, generate
Debughath b:2 . .
sz PAUSE 100 " et the motor ciruits weke up sounds, and drive its wheel motors.
té%%iizf?“ Low 12 \ Initalize motor 10 pins to With the obstacle and stall sensors,
o e S you can program the Scribbler to
Spinning.bsZ PULSOUT 12, 2500 ' right wheel forward half speed | .
?t;fshg:zbsz L PULSOUT 13, 2500 ' left wheel forward half speed dI’lVG Safely-
et b0 =l -
E;S"\E”;ampll\es b1 basbs2 b 7 | |« _’lJ
18:1 | Modiied [INS | [A

To program your Scribbler Robot, you need to have the BASIC
Stamp Editor software (v2.1 or higher) installed and running on
your personal computer. You will need to have your Scribbler
Robot connected to you computer with the serial cable. Also, you
will need to have confirmed that your computer is communicating @{ﬁ,« :
with the BASIC Stamp microcontroller inside the Scribbler Robot.
If you need instructions to do these things, follow the Setting Up
Guide before you begin here.

INTRODUCING THE BASIC STAMP EDITOR 2
SCRIBBLER HARDWARE PROGRAMMING CONNECTIONS 8
BLINKING THE LIGHTS WITH PROGRAM LOOPS 9
CONTROLLING SOUND AND MOTION WITH OUTPUT SIGNALS 12
MAKING DECISIONS WITH SENSORS 20
PUTTING IT ALL TOGETHER 30

Scribbler PBASIC Programming Guide

© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

2 - Writing Programs

Introducing the BASIC Stamp Editor

To make a program for your Scribbler, ~lalx]

Fle £t Drocthe Bun Heb

you will type a list of instructions in the
main edit pane. The programs are
written in PBASIC, a language that is
easy for people to read and understand.
The BASIC Stamp Editor translates the
PBASIC program into binary numbers
- a long string of ones and zeroes - that
computers can understand. When you
run your program, the Editor transmits it
from your computer to the BASIC
Stamp inside your Scribbler Robot.

main edit pane

DASI Gtamg fles [Bal ~bar-bez-b =] (4l | ll—l

il [

Writing a Program

In every PBASIC program, you must include two instructions that let the BASIC Stamp Editor
know what model of BASIC Stamp microcontroller you are programming, and what version of
PBASIC you are using. You can use the toolbar icons to place these two instructions in your
program automatically, without having to type them.

\ Begin by clicking on the BS2 icon on the top tool bar, | e @ @ ’@ * ’@ |
since the Scribbler contains a BASIC Stamp 2. This [gd] | >

inserts “' {$STAMP BS2}” into your program. —— Stamp Mode: B52)_

V' Next, click on the PBASIC 2.5 icon, for language
we will be using in all our Scribbler programs. b e | B B »
This inserts “' {$PBASIC 2.5}” into your | >
program. PBASIC Language: 2.5|

V' Then type in the other 4 lines, so your program
looks just like this:

ScribblerHello.bs2 |

' Scribbler PEBASIC Programming Guide — ScribblerHello. bsZ -
' BASIC Stamp ss=nds message to Debug Terminal

> [SETAMD B2
" {SPBASIC 2.5}

DEEUG "Hsllo, I am your Scribbler Robot!l”
END

N o

Now, let’s save your program on your personal computer. You don’t have to save your program in
order to run it, but it is a good habit to save it anyway.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 3

V' From the File menu, select Save. The Save As window will open.
' Enter the name ScribblerHello into the File name field.
V' Click the Save button to save the program and close the window.

#5 BASIC Stamp - Untitled1 savens 21x|

File Edt Directive Run Help B & My Docurens 5 eEerE
éMyMusic
ey w (24 my Pictures
Jpen... Chrl+ o 9 by videos
Open From., .. [m

Desktop
Save As,..,

Sawe Ta... 3 .

My Documents

File name: IScnbblelHellu.bSZ j Save I
Save as bype: IBASIC Stamp 2 files [*.bs2] j Cancel |
pA

Running a Program

Now your program is ready to be sent to the BASIC Stamp microcontroller inside your Scribbler
Robot. First, let’s make sure the Scribbler is ready to receive the program.

Programming Connection Checklist

V' Make sure your Scribbler Robot is connected to your computer =
with the provided serial cable.

V' Make sure the Scribbler power switch is in the “on” position.
1=0ON
0=OFF

V' Make sure the red power light is on. If it is not, your Scribbler
may need new batteries.

If you need instructions to connect your Scribbler Robot to your computer, follow the directions in
the Setting Up guide before you continue.

Run the Program

There are several ways to run a program. You can select Run from the
Run menu, hold down the Ctrl and R keys together, push the F9 function | B E e R
key, or click the Run icon “P” on the tool bar.

Fun

V' Run the program.

You may see a Download Progress window open briefly while your program is transmitted from
your computer to the BASIC Stamp inside the Scribbler Robot. Or, you may get an error message.

V' Ifit says “No BASIC Stamps found” recheck your connection and try again.
v If it says something else, check your program for typing errors and try again.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

4 - Writing Programs

If all is well, a Debug Terminal perymem— _lolx|
opens up. The BASIC Stam Com Port: Baud Rate: Parity: Data Bits: Flows Control:

pets P G i | e | e | e s 4
transmits the message back to your

computer.

\/ Press and release the Hello, I am your Scribbler Robot!

e reset button on the
Scribbler Robot a few
times.

Pressing the reset button makes the program start over from the beginning. So, each time you
press it, your message will reprint in the Debug Terminal.

Macros...l Pauze | Clear | Claze | [~ Echo OFf

How the ScribblerHello.bs2 Program Works

Let’s look at each part of the program to see what it does. The first two lines are comments,
messages for a person reading the program. It is a good habit to explain your programs with
comments so you can remember later what the programs do, and to make it easier for other people
to understand them. However, comments are not necessary to make a program run.

Notice that these two lines begin with an apostrophe. This signals to the BASIC Stamp Editor that
these lines are comments and do not need to be sent to the BASIC Stamp microcontroller.

' Scribbler PBASIC Programming Guide - ScribblerHello.bs?2
' BASIC Stamp sends message to Debug Terminal

The BASIC Stamp Editor usually ignores everything to the right of an apostrophe, with some
exceptions. It does pay attention to special comments called compiler directives. These directives
are required in every program for your Scribbler Robot.

' {$STAMP BS2}
' {$PBASIC 2.5}

The first one is the $STAMP directive. It lets the BASIC Stamp Editor know that this program is
for a BASIC Stamp 2. The $PBASIC directive below it indicates the program is written in the
PBASIC 2.5 programming language. Remember, it is best to use the toolbar buttons to place
compiler directives in your program. If they are mistyped, the program will not run.

The last two lines make up the list of instructions that will be loaded into the BASIC Stamp
microcontroller. A command is a word that tells the BASIC Stamp to do a certain job. The first
instruction in this program uses the DEBUG command.

DEBUG "Hello, I am your Scribbler Robot!™"

This command tells the BASIC Stamp to send a message to the personal computer through the
serial cable. The text between the quotes will appear in the Debug Terminal.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 5

END

The second command, END, puts the BASIC Stamp into low power mode after the program runs.
In low power mode, the BASIC Stamp waits for you to push and release the reset button on the
Scribbler Robot, or to load a new program.

More about DEBUG

DEBUG is a powerful command with many uses. Here, it sent a simple text message to your
computer, exactly as you typed it. But DEBUG can also be used to perform and report math
calculations, prompt the user to perform a task, report the status of a sensor, and much more. We
will use DEBUG many different ways throughout this guide. But for now, let’s add to our current
program to do a little math.

\ From the File menu, choose Save As, and enter the new filename DebugMath.bs2.
V' Change the comment lines to document the new program:

' Scribbler PBASIC Programming Guide - DebugMath.bs2
' BASIC Stamp displays math problem answer in Debug Terminal

\ Add three more DEBUG commands under the first one:

DEBUG CR, "What is 7 x 122"
DEBUG CR, "The answer is: "
DEBUG DEC 7 * 12

Y our new program will look like this:

' Scribbler PBASIC Programmming Guide - DebugMath.bs?z =
' BASIC sStamp displays math problem answer in Debug Terminal

" [$STAMP BS2}
' [$PBASIC 2.5}

DEBUG "Hello, I am your Scribbler Robot!™ (.
DEBUG CR, "What is 7 x 122"

DEBUG CR, "The answer is: ™

DEEUG DEC 7 * 12

END =
K :IJ

\ Save the updated program.
V' Run the program.

The Debug Terminal will open, and display the answer to the math problem.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

6 - Writing Programs

DEBUG Formatters and Control Characters

Notice that this program has four =10l x|
: Com Part: Baud Rate: Parity: Data Bits: Flow Contral: @ T% [DTR I RIS

DE.BUG commands. Also, notice | IR [ECONES | [T (N R | T2 @ RX @ DSR @ CTs

their messages appear on three

separate lines in the Debug

Terminal.

Debug Terminal #1

Scribbler Robot!

In this program, the second and |lisas
third DEBUG commands are e 84
followed by CR and a comma. CR
stands for “carriage return,” and it
is an example of a DEBUG
control character. Control characters move the cursor around in the Debug Terminal, so you can
place messages where you want them to appear. By using “DEBUG CR,” these messages get
printed on their own lines.

Macros...l Pauze | Clzar | Cloze | [~ EchoOff

The fourth DEBUG command does not use the CR control character. That is why its message (the
answer to the math problem) appears right after the third message on the same line.

The fourth DEBUG command is followed by DEC. This is an example of a DEBUG for matter.
A formatter determines what form a message will take in the Debug Terminal. The DEC formatter
made the answer to the math problem display in the form of a decimal number.

ASCII Code

If you forgot the DEC formatter in this program, your answer would be displayed in its ASCI|
code equivalent, the capital letter “T.” ASCII code stands for American Standard Code for
Information Interchange. Most microcontrollers and personal computers use this code to assign
a number to each keyboard function. Some numbers correspond to keyboard actions, such as
cursor up, cursor down, space, and delete. Others correspond to letters, numbers, and symbols.
The ASCII code numbers 32 through 126 include the characters and symbols that the BASIC
Stamp can display in the Debug Terminal. Let’s try it.

V' To start a new program in the BASIC Stamp Editor: from the File menu, select New.
Or, you can click on the toolbar icon that looks like a new sheet of paper.

¥ BASIC Stamp - 4 BASIC Stamp

File Edit Directive File Edit Directiv
e
Cpen. ..

Open Fram. .. Eef[ENParalaxd

' Enter and run the program ASCILbs2, shown on the next page.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 7

Scribbler PBASIC Programming Guide - ASCIT.bsZ o
' Use ASCII code to in a DEBUG command to display a message.

" [5STAMP BSZ}
" [SPBASIC 2.5}

DEBUG 66,65,83,73,67,32,83,116,97,1059,112, 32,50

END .
K0 _>l_I

What message did you see in the Debug Terminal? It should print “BASIC Stamp 2.”

Your Turn
V' Write a program using DEBUG and ASCII code that displays your name in the Debug
Terminal. The character codes are included in the ASCII chart at the end of this guide.

Learning More with the Help File

There are many formatters and control characters for the DEBUG command. You can look up
more information about DEBUG and every other PBASIC command by using the Help file in the
BASIC Stamp Editor. Let’s take a look.

V' From the Help menu choose Index, or click on the Help icon.

V' Under the Index tab, type “debug” into the keyword field. |
' Press the Enter key to open the DEBUG article.]

Now you can read all about the DEBUG command, and see charts of all its formatters and control
characters. Use the scroll bar to the right of the window to see the whole article.

E? PBASIC Syntax Guide =13 x|

e &
Hide Back Print Options
Corrt 19|t 2
Lontents 1hdex | Searc
Type in the keyword to find: D E BUG
£ LEeEs
1 2z HIZE GESK 2P W Exarnples
Syntax: DEBUG Outputlata {,OutputDatal
Function
Digplay information on the PC screen within the BASIC Stamp editor program. This
ELSEIF E command can be used to display text or numbers in various formats on the PC screen in
END order o follow program flow (called debugging or as part of the functionality of the
: BASIC Stamp application,
Dizplay | -
4| | »

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

8 - Writing Programs

Scribbler Hardware Programming Connections

So far, our example programs have caused the BASIC Stamp microcontroller to send messages to
your personal computer. But the main job of the BASIC Stamp inside the Scribbler is to control
the parts of the robot. The BASIC Stamp does this through its 16 1/O pins, numbered from PO
through P15. Each I/O pin is connected to one of the Scribbler’s circuits.

PO: Right Light Sensor

P1: Center Light Sensor

P2: Left Light Sensor

P13: Left Wheel Motor —l_> 4J_ P12: Right Wheel Motor

P7: Motor Stall Sensor
(inside)

P11: Speaker

P8: Right Light Emitting Diode

P3: Line Sensor Infrared Emitters
P9: Center Light Emitting Diode

P4: Right Line IR Detector

P10: Left Light Emitting Diode

P5: Left Line IR Detector

P14: Right Object Sensor IR Emitter

P15: Left Object Sensor IR Emitter

P6: Object Sensor IR Detector

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 9

About the BASIC Stamp 1/O Pins
I/O stands for input/output. Each BASIC Stamp I/O pin can do three different things:

e Connect a circuit to +5 volts. This makes the pin an output, sometimes called
“output high.” In this way, the BASIC Stamp can turn on a circuit in the Scribbler.

e Connect a circuit to 0 volts (ground). This also makes the pin an output, “output
low.” This is how a BASIC Stamp can turn off a circuit in the Scribbler.

Sometimes a pin is rapidly switched between output high and output low in a specific
pattern. In this way, the BASIC Stamp can send a signal which other devices can
recognize.

e Monitor the voltage on a circuit. This is called making the pin an “input.” In this
way, the BASIC Stamp can tell if a circuit is turned on or off, or receive signals from
other devices. When an I/O pin is an input, it does not change the voltage of the circuit
it is monitoring.

In this Guide, we will use the BASIC Stamp I/O pins to do all these things as we control the
Scribbler’s circuits. Let’s start with a program that blinks the LEDs on and off.

Blinking the Lights with Program Loops

This program will control the Scribbler’s three green light emitting diodes, called LEDs for short.
Enter, save and run the program LedsOnOff.bs2, as it is shown below.

LedsOn0f bs2 |

' Scribbler PBASIC Programming Guide - LedsonCff.bsz =
" Turn on LED:s for 1 second, then turn them off.

' [SSTRMP BS2}
' [SPBASIC 2.0}

HIGH @8
HIGH S
HIcH 10

PRUSE 1000

Low 8
LOW 9
Low 10

N of

\ Press and release the Scribbler’s reset button a few times.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

10 - Writing Programs

Each time you re-run the program, the LEDs will turn on for one second, then turn off. Can you
see how the program is making this happen?

The HIGH command sets a BASIC Stamp
I/O pin to output high. So, each of these
commands:

P8: Right Light Emitting Diode

P9: Center Light Emitting Diode

HIGH 8
HIGH 9 P10: Left Light Emitting Diode
HIGH 10

makes an I/O pin connect an LED circuit to 5 volts, which turns on that LED. Even though the
BASIC Stamp executes the commands one at a time, it looks like the LEDs all turn on at the same
moment. That is because computers work faster than our eyes can see. Sometimes we need to
slow them down to human speeds. The next command does just that:

PAUSE 1000

PAUSE makes the program wait a while before moving on to the next instruction. The number
following PAUSE tells the program how long to wait. PAUSE is measured in milliseconds
(abbreviated ms). There are one thousand milliseconds in one second. So, the command PAUSE
1000 makes the program wait for one second before continuing.

LOW 8
LOW 9
LOW 10

As you might have guessed, the LOW command sets a BASIC Stamp 1/O pin to output low. This
connects P8, P9 and P10 to 0 volts, which turns off each of the LED circuits.

Repeating Actions with DO...LOOP

With this program, we can make the LEDs blink over and over again by pushing the reset button.
But what if we don’t want to keep pushing the button? We can use a programming concept called
a loop to make actions repeat automatically.

The DO...LOOP command causes all the instructions between DO DO

and LOOP to be repeated over and over again. In this example, in the

first pass through the DO...LOOP the right LED turns on with HIGH HIGH 8

8, and the program pauses for 500 ms. Next, LOW 8 turns the LED PAUSE 500

off, and the program pauses again for 500 ms. Then, the program
reaches LOOP. This signals the program to jump back to DO, and
repeat the high-pause-low-pause sequence all over again. The
program will continue looping this way endlessly (until the Scribbler LOOP
is reprogrammed or power is shut off.) This is called an infinite loop.

LOW 8
PAUSE 500

\ Enter, save and run LedLoop.bs2, on the next page.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 11

Ledloop.bs2 |

' Scribbler PEASIC Programming Guide - LedLoop.bsZ =
' Turn LEDs on and off in a pattern, in an infinite loop.

' [SSTAMP BSZ2})

' [SPBASIC 2.5}

DERUG "Program Running!"

DO
HIGH 8
Low S
HIGH 10

PRUSE 500
LOW 8

HIGH 3
Low 10

PRUSE 500

LOOP >
I I— _>|_I

Now, your LEDs blink on and off in a pattern without having to push the reset button. The
DEBUG message “Program running!” should print in the Debug Terminal just once, and not over
and over again. This is because the DEBUG command comes before the DO command in the
program. It is not inside the loop, so that instruction does not get repeated.

Why is there a DEBUG command in this program?

This command has nothing to do with controlling the LEDs. But, a few personal computers work
with the BASIC Stamp better if there is a DEBUG command in every program that uses
DO...LOOQOP or similar commands. Let’s test to see if your computer is one of these.

V' Make the DEBUG command a comment by placing an apostrophe in front of it:

'DEBUG "Program Running!"
V' Run the program again.

Did your LEDs keep blinking? |f they did not, place a DEBUG command in every program
asa precaution. The rest of our sample programs include this command as a reminder.

Your Turn
V' Write a program that turns on the LEDs one by one from right to left, 1/10 a second
apart. Then, turn them off again one at a time, from right to left. Make the pattern
repeat in an infinite loop.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

12 - Writing Programs

Controlling Sound and Motion with Output Signals

We have used simple HIGH and LOW commands to use the I/O pins to turn circuits on or off. But
remember that I/O pins can also send output signals by switching between output high and output
low in patterns. Output signals are often used to control or communicate with other electronic
devices. In the Scribbler Robot, the BASIC Stamp uses special output signals to create sounds on
the speaker and to control the wheel motors.

Making Sounds with FREQOUT

The Scribbler Robot’s speaker circuit is connected to
BASIC Stamp I/O pin P11. There is a special PBASIC
command just for making sounds on a speaker:
FREQOUT. It’s short for “frequency out.” P11: Speaker

The FREQOUT command makes an I/O pin send an output signal in a special pattern. This pattern
makes a mechanism inside a speaker vibrate. This vibration causes tiny changes in air pressure
that our ears detect as sound. The pace of this vibration is called frequency, and it is measured in
hertz (abbreviated Hz). Think about hertz as a measure of vibrations per second. With the
FREQOUT command, you can control the frequency of this vibration to create the tone you want.
The greater the frequency is, the higher the tone sounds. Here is the syntax for FREQOUT:

FREQOUT Pin, Duration, Fregl, Freg2

Pin is the BASIC Stamp I/O pin connected to the speaker

Duration is how long you want your tone to play, in milliseconds, up to 65535.
Freql is the frequency in hertz of the tone you want to play.

Freg2 is an optional second frequency, to play two tones at once.

Here is an example FREQOUT command that plays a 1,200 hertz tone for one second:
FREQOUT 11, 1000, 1200

Pin, Duration, Fregl and Freg2 are called the arguments of the FREQOUT command. Many
PBASIC commands have several arguments. The argument values you choose will determine the
effect these commands have in the program.

Different speakers respond to different frequencies. The speaker in your Scribbler Robot likes
frequencies between 250 Hz and about 2000 Hz. Frequencies in the middle of this range will play
the loudest, and those at the ends of this range will play a little quieter.

Here is an example program that plays 5 tones, one at a time. Each tone is generated with its own
FREQOUT command

\ Enter, save and run Tones.bs2

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 13

Tones.bs2 |

' Scribbler PBASIC Programming Guide - Tones.bsz B
' Play 5 single tones on the speaker.

' [$STAMP BSZ}

' [$PBASIC 2.5}

DEBUG "Frogram running!™

FREEQOUT 11, Z00, 500 ' Flay 500 Hz tone for 1/5 second
FEEQOUT 11, 400, 1000 ' Play 1000 Hz tone for Z/5 second
FEEQOUT 11, 00, 1500 ' Play 1500 Hz tone for 3/5 second
FEEQOUT 11, 800, 2000 ' Play 2000 Hz tone for 4/5 second
FEEQOUT 11, 1000, 2500 ' Play 2500 Hz tone for 1 second

T of

Did you hear how each tone played longer and sounded higher than the one before it?

successive FREQOUT command, so the tone each successive FREQOUT

The Duration argument is greater with each 7 r The Freql argument is greater with
500 command, so the tone sounds

plays longer. FREQOUT 11, 200,)
FREQOUT 11, 400, 1000 higher.
FREQOUT 11, 600, 1500
FREQOUT 11, 800, 2000
FREQOUT 11, 1000, 2500

Remember, you can mix two tones at once in a single FREQOUT command by using optional
Freg2 argument. You can also make a repetitive sound, like an alarm, by placing FREQOUT
commands in a DO...LOOP. This next example program does both:

V' Enter, save and run Alarm.bs2, then plug your ears.

Alarm.bs2 |

' Scribbler PBASIC Programming Guide - Alarm.bsZ

' Make a alarm noise with FREQOUT commands in a loop
' [SSTAMP BSZ}

' ISPBRSIC 2.5}

|»

DEBUG "Program running!”

0o

FREQOUT 11, 200, 700, 750
FREQOUT 11, 200, 900, 950

LOOP -
KN I :IJ

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

14 - Writing Programs

Musical Notes

You can make your Scribbler play more pleasant sounds, like notes similar to those made by piano
keys. This picture shows the frequencies for a section of a piano keyboard, starting with Middle C.
The frequencies are rounded to the nearest whole number. You can write a song by making a list of
FREQOUT commands using these frequencies.

N~ — o To] [(e] < N o ~ (]
N~ ~— N ~ © [Lp] AN < (923 ™
N ™ ™ < < Yo} © N~ [e0] » ~
AN < o (©2] (&) o < ™ N D [ce) < o [c 0] <
© (o] ™ <t (@] < [©)] N [ce] Yo} (o)) [c) [ce] [ce] o
/ N N ™ [sp] ™ < < Lo} Le] © © N~ [ee] (o)) — /

ochAODOIHLO
ThAMSHFEHDT
oh~r@O@SHELT
TRARDIHAQD
[o 200 NSy v JE=JE - NGl
cogsHOO
coamesFoO
caXrSsHFoa
comWe HF o>

C4|D4|E4|F4|G4|A4|B4|C5|D5|ES5|F5|G5|A5|B5|C6

]]

\ Enter, save and run Twinkle.bs2.

]
' Scribbler PBASIC Programming Guide - Twinkle.bsZ

' Play the first 7 notes of Twinkle Twinkle Little sStar
' [5STRAMF BSZ}

' [$PBASIC 2.5}

| »

DEBUG "Program Running!™

FREQOUT 11, 500, 523 '
FREQOUT 11, 500, 523 '
FREQOUT 11, 500, 784 '
FREQOUT 11, 500, 764 '
FREQOUT 11, 500, 880 '
FREQOUT 11, 500, 880 '
FREQOUT 11, 500, 784 ' _
N LI_I

rp I = = B SR YA S A

Your Turn
V' Write a program that plays the first 7 notes of “Mary Had a Little Lamb” or any other
song you choose. Hint: If you want to make a note last longer, increase the Duration.

Further Investigation

You can learn a lot more about programming BASIC Stamp 2 microcontrollers to play music in
the Frequency and Sound Chapter of What's a Microcontroller? (v2.0 or higher). This book is
included on the Scribbler Software CD, and can be downloaded free from www.parallax.com.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 15

Controlling the Wheel Motors

Let’s make the Scribbler move! Each drive wheel on the Scribbler Robot has its own motor,
which is controlled by its own I/O pin. To make the robot move, you need to send separate
commands to each motor. The command that makes the motors move is PULSOUT. Just like
FREQOUT, PULSOUT causes a BASIC Stamp I/O pin to send a special output signal.

J— P12: Right Wheel Motor

P13: Left Wheel Motor —I_>

About PULSOUT

PULSOUT sets an I/O pin as an output, then invertsits voltage. To invert something is to make it
the opposite of what it was — in this case, low voltage becomes high, and high voltage becomes
low. The voltage stays inverted for a specified time, then switches back again. The syntax looks
like this:

PUL SOUT Pin, Duration PULSOUT Duration
Pin is the BASIC Stamp I/O pin et i T Tt R ——
connected to the motor. High (5 volts)
Duration is the amount of time that

you want the voltage inverted, /O Pin

measured in 2 microsecond units (a Signal Pem—m———1. _ _ _ _ _e————
microsecond is a millionth of a Low (0 volts)

second, abbreviated US).

Motor
Circuit

The Scribbler wheels’ motor circuitry is waiting for a high (5 volt) signal pulse, and when it gets
one, it will measure how long it lasted.

The length of the high pulse controls the motors velocity — the speed and direction combined. Here
is how the Scribbler’s motor circuitry interprets the high signals:

The PULSOUT Duration argument can be a value from 1000 to 3000
A Duration of 1000 turns a motor full speed backward

A Duration of 2000 makes a motor stop

A Duration of 3000 turns a motor full speed forward

The closer Duration is to 2000, the slower the motor will turn

Initializing the Motors

The Scribbler’s motor circuitry needs to be initialized - prepared to receive a signal. Since the
Scribbler’s motor circuits are waiting for a high pulse, the I/O pins need to start off sending a low

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

16 - Writing Programs

signal. That way, when the PULSOUT command inverts the signal, it will send a high pulse. So,
we need to initialize each motor circuit’s I/O pin with a LOW command.

The Scribbler motors’ circuitry also needs a little time to start up. If you send them a PULSOUT
first thing in a program, the circuits may not be ready to receive the signal. So, we need to place a
PAUSE 100 command at the beginning of every Scribbler drive program to give the motor
circuitry time to get ready.

Avoiding Accidents

Be careful! When you program the Scribbler to move, it may
drive off your desk.

' Place your Scribbler Robot on a small book or box, so
the wheels don’t touch anything.

Enter, save and run FullSpeed.bs2.

Turn of the Scribbler’s power switch.

Unplug the serial cable, and set the Scribbler on the floor.

Turn on the power switch, and watch your Scribbler take off. But, be ready to catch it,
since it will drive right into things!

2 =2 2 2

FuHSpeedbsEl

' Scribbler PBASIC Frogramming Guide - FullsSpeed.bsi =
' Turn both wheels forward at full speed.

' [SSTRMP BSZ2)

' [SPBRSIC 2.5}

DEBUG "Frogram running!™

Low 12 ' Initalize motor I/0 pins to
Low 13 ' output low

FPAUSE 100 ' Let the motor ciruits wake up
PULSOUT 12, 3000 ' right motor forward full speed
FULSOUT 13, 3000 ' left motor forward full speed

=
4| | »

Motor Calibration

This program makes each motor turn forward at its full speed. But each motor is unique, so full
speed for one motor might be faster or slower than full speed for the other. So, even though
FullSpeed.bs2 uses the same PULSOUT Duration of 3000 for each motor, you Scribbler probably
won’t drive in a straight line.

' Place your Scribbler in an open area on the floor, and watch it drive.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 17

Did your Scribbler veer to the left, or maybe to the right? To make it drive straight, you need to
reduce the motor speed for the wheel opposite from the way it is veering. Let’s replace the
PULSOUT Duration arguments in FullSpeed.bs2 until your Scribbler drives straight. This is called
softwar e calibration.

v OIf your Scribbler veered to the left, slow the right wheel with PULSOUT 12, 2900.
\ If your Scribbler veered to the right, slow the left wheel with PULSOUT 13, 2900.
v Run your updated program.

V' Watch to see if your Scribbler is still veering to the left or to the right.

If your Scribbler is still veering to the same side as before, you need to make that opposite wheel
slow down even more. If it is now veering the other way, you can start increasing that PULSOUT
Duration again, a little at a time.

V' If your Scribbler is still veering to the same side, keep decreasing the opposite wheel’s
PULSOUT Duration by 100 in each test, until it starts veering the other way.

V' Once your Scribbler starts veering the other way, start increasing the PULSOUT
Duration again, by 10 in each test.

V' If the Scribbler starts veering in the other direction again, start decreasing the
PULSOUT Duration by 1 until it drives straight, if you are really that patient.

What PULSOUT Duration values made your Scribbler drive straight? Write them down here, so
you can use them again in your own programs:

PULSOUT 12,
PULSOUT 13,

Over time, your Scribbler’s motors will become more settled in as the lubricant inside them works
its way through the gears. They may begin to perform differently, and you might need to repeat
this calibration test in the future.

Basic Maneuvers
Here are some basic maneuvers, how they work, and the PULSOUT Duration arguments they use.

Maneuver Strategy P12 Duration P13 Duration
Right Turn Make right wheel turn slower than left wheel 2500 3000
Left Turn Make left wheel turn slower than right wheel 3000 2500
Spin Right Turn wheels in opposite directions 1000 3000
Spin Left Turn wheels in opposite directions 3000 1000
Back up to the left | Reverse both wheels, left wheel slower 1000 1500
Back up to right Reverse both wheels, right wheel slower 1500 1000
Full Reverse Use smallest Duration argument for both motors 1000 1000

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

18 - Writing Programs

Your Turn

V' Experiment! Replace the PULSOUT Duration values in FullSpeed.bs2 to make the
Scribbler perform one of the maneuvers in the table above, or experiment with different
Duration values to see their effect.

Pin Symbols

You have probably noticed that once you start a wheel turning with a single PULSOUT command,
it will keep turning at that velocity until you send it a new command. The BASIC Stamp can make
the Scribbler do other things while the wheels are turning. Let’s try combining what we have
learned so far, in a program that makes the Scribbler’s LEDs, speaker, and motors work all
together. But before we write a complicated program, let’s learn one more helpful trick.

When you write a short program, it is easy to remember which I/O pin number belongs to which
circuit. But when you write long programs that control lots of circuits, remembering the pin
numbers can be difficult. Also, other people reading the program may not be able to understand
what it does.

To make our programs easier to read and write, we can give each I/O pin a name that identifies the
circuit it controls. Then, when we write the program, we can use this name, called an alias, in
place of the I/O pin number. To do this, we use the PIN directive at the beginning of a program.

Here is an example that uses the PIN directive to define the I/O pins controlling the LED circuits.

LedRight PIN 8
LedCenter PIN 9
LedLeft PIN 10

Now, when you want to turn the LEDs on or off, you can use the aliases instead of pin numbers:
HIGH LedRight

LOW LedCenter
HIGH LedLeft

Example Program: PinSpin.bs2

Let’s try a program that uses the Scribbler’s LEDS, speaker, and motors together. This program
uses pin symbols for each I/O pin needed.

\ Set your Scribbler back on its box so the wheels don’t touch anything.
V' Reconnect the serial cable to the programming port.
' Carefully read the program on the next page, PinSpin.bs2.

Even though it does not have many comments, can you figure out what it will do?

' Enter, save and run PinSpin.bs2.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 19

FiS pir.bs? |

' Scribbler PBASIC Programming Guide - PinSpin.bsé =
' The Scribbler beeps and blinks green LEDs while spinning

' [SSTAMP BSZY

' [SPERSIC 2.5}

DERUG "Program running!”

' I/0 Pin Definitions

LedRight PIN 8
LedCenter PIN S
LedLeft PIN 10
Speaker PIN 11
MotorRight PIN 12
MotorlLeft PIN 13

' Motor Initialization

LOW MotorRight
LOW Motorleft
PARUSE 100

' Main Programn

PULSOUT MotorRight, 2700
PULSOUT MotorlLeft, 1300

Do
HIGH LedRight
LOW LedCenter
HIGH LedLeft

FEREQOUT Speaker, 250, 523
LOW LedRight

HIGH LedCenter
LoW LedLeft

FEEQOUT Speaker, 250, 653

LOOP _
N I LFJ

V' Turn off the Scribbler, disconnect the programming cable, and set it on the floor.
V' Turn the Scribbler back on and watch it perform!

Did the Scribbler do what you thought it would from reading the program?

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

20 - Writing Programs

Making Decisions with Sensors

So far, our programs have used a BASIC Stamp I/O pin only as an output: for turning an LED
circuit on and off or for sending a control signal to a speaker or motor. Next, we will learn to use
an I/O pin as an input, to receive a signal from a sensor. After that, we can use this sensor signal
input value to make a decision. This is how the Scribbler can be programmed to respond to its
environment independently.

The Stall Sensor

By now, you probably have seen your Scribbler run
into an object, then try to keep driving even though it
was stuck. The Scribbler has a built-in stall sensor
that can tell when the motors are running but the
wheels are not turning freely (the Scribbler is stuck).
The stall sensor circuit is connected to both motors,
and to BASIC Stamp /O pin P7.

When the motors are running and the wheels can turn freely, the stall sensor sends a low voltage
signal to I/O pin P7. If the motors are running but either one of wheels can’t turn, the stall sensor
sends a high signal to P7.

When an /O pin is set to input, it
can receive this signal by sensing Wheel is stalled
the voltage level on the circuit it V. - T
connects to. The BASIC Stamp High (Binary 1)
interprets this voltage level using
TTL logic. This means that any /2 °'" 11

: : P7 Sl
voltage above 1.4 volts is considered Input Low (Binary 0)
a high signal, and voltage below 1.4 . 7 2 0V
volts is considered a low signal. The
BASIC Stamp reads a high signal as
the value 1 and a low signal as the
value 0.

Stall
Sensor

/O Pin 1.4 volt logic threshold Signal

Wheel is free

To receive the signal from the stall sensor, I/O pin P7 needs to be set as an input. You can use the
INPUT command to do this, but it is often not necessary. Input is the default mode for BASIC
Stamp I/O pins: they are automatically set to input unless you put a command in a program that
uses them as an output.

Defining Variables

So, we know that the BASIC Stamp can interpret the stall sensor signal as a number value: 0 or 1.
Now, we need a way for our program to remember that value so it can be used later in other
instructions. The most common way to do this is to create a variable. A variable is a reserved
piece of the BASIC Stamp RAM memory. To create and use a variable, you must declare it in
your program, usually at the beginning.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 21

Here is the syntax for a variable declaration:

name VAR Size

name is the name you choose for your variable. It is best to pick a name that describes what you
will use the variable for. There are some rules for variable names:

1.

2.
3.

4.

The name cannot be a reserved word - one that is already used by PBASIC. Some
examples of reserved words you will recognize are DEBUG, HIGH, LOW, and PIN.
The name cannot contain a space.

The name must begin with a letter or an underscore “ ”, but it can also include
numbers.

The name must be less than 33 characters long.

Size is the size of variable that you choose. The BASIC Stamp has 4 sizes of variables: Bit, Nib,
Byte or Word. This table shows what range of values can be stored in each type of variable.

Variable Type | Value Range
Bit Otol
Nib Oto 15
Byte 0 to 255
Word 0 to 65535

It is a good programming habit to use the smallest size variable that you need. For the stall sensor,
we only need to see if it is sending a low signal (0) or a high signal (1). So, a Bit will be enough.
Here’s an example variable declaration we could use for the stall sensor:

stuck VAR Bit

Example Program: CheckStall.bs2

The next example program will check the status of the stall sensor, and display the status in the
Debug Terminal.

2 < 2 2 2 2 2

Place the Scribbler back on its box so the wheels aren’t touching anything.

Reconnect the serial cable to the programming port.

Enter, save and run CheckStall.bs2.

Leave the Scribbler on its box so the wheels can turn freely.

Gently press your hand against one wheel’s tire to slow it down, and watch the Debug
Terminal.

As soon as you see the number in the Debug Terminal change from a 0 to a 1, release
the wheel.

Try it on the other wheel.

When you have applied enough pressure with your hand to keep either wheel from turning freely,
the number in the Debug Terminal will change froma O toa 1.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

22 - Writing Programs

CheckStauhsz|

' Scribbler PBASIC Programming Guide - CheckS&tall.bsZ
' Display stall sensor I/0 pin status in Debug Terminal

' [$STRMP BS2}
' [$PBASIC 2.5}

DEBUG "Program running!™

' I/0 Pin Definitions
Stall PIN 7
MotorRight PIN 12
MotorLeft PIN 13

stuck VAR Bit

LOW MotorRight
LOW MotorLeft
PRUSE 100

' Main Program

oo
stuck = stall

PRUSE &0
LOOP

KN —

How CheckStall.bs2 Works

' Variable Declaration

' Motor Initialization

PULSOUT MotorRight, 3000
PULSOUT MotorLeft,

3000

DERUG HOME, BIN stuck

T

motors full speed forward

Put status of stall I/0 pin
into the wvariable "stuck"
Display binary wvalue of stuck
time to read display

il

These three lines of code are pin definitions that give names to the I/O pins the program will use.

Stall PIN 7

MotorRight PIN 12
MotorLeft PIN 13

This line declares a bit-sized variable, “stuck,” that will be used to store the status of the stall

sensor pin.

stuck VAR Bit

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 23

These three lines should be familiar: they are used in every program that controls the Scribbler’s
motors. Since we have used the PIN directive, we can use pin names instead of numbers in the
LOW commands.

LOW MotorRight
LOW MotorLeft
PAUSE 100

The first two lines in the main program start both motors turning at full speed forward.

PULSOUT MotorRight, 3000
PULSOUT MotorLeft, 3000

The rest of the main program monitors the status of the stall sensor’s I/O pin, and displays that
status in the Debug Terminal. It is nested in a DO...LOOP, so the I/O pin status can be updated
continually.

Remember that Stall is the name we declared for I/O pin P7, which is receiving a signal from the
stall sensor. Stall will interpret this signal as a value, either a 0 (not stuck) or a 1 (stuck). The
instruction causes value of Stall to be stored in the variable stuck — it makes stuck equal to
whatever Stall is at that moment.

DO
stuck = Stall

The DEBUG command displays the value of the stuck variable in the Debug Terminal. This
DEBUG command is using a new control character, HOME. HOME makes the cursor go to the
top left corner of the Debug Terminal. As you ran your program, it looked like the 0 changed to a
1 when you stalled the wheel. But really, each time through the DO...LOOP, HOME just makes
the new value of stuck overwrite the last displayed value.

DEBUG HOME, BIN stuck

This DEBUG command also uses a new formatter, BIN. BIN is short for binary, the number
system that uses only Os and 1s. Remember, stuck is a bit-sized variable that can only be equal to 0
or 1. If you forgot the BIN formatter, your Debug Terminal was probably blank when you ran the
program.

This short PAUSE command gives your eyes time to read the Debug Terminal display, without
constant flickering, before starting the loop over again.

PAUSE 50
LOOP

Now that we know how to check the status of a sensor and store it in a variable, let’s use that
information to make a program decision.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

24 - Writing Programs

Making Decisions with IF...THEN

The IF...THEN command allows a program to test a condition, and then use the answer to make a
decision about what to do next. Testing a condition might mean to check whether a sensor is
sending a high signal or a low signal. There are several syntax options for the IF..THEN
command. For a simple instruction, you can put the whole thing on one line, like this:

IF Condition THEN Statement
Think of it like this:

IF awhed is stuck THEN play an alarm sound on the speaker
The command would read like this:

IF stuck = 1 THEN FREQOUT Speaker, 100, 950

If you have a more complex decision to make, you can use this syntax which keeps it organized on
several lines:

IF Condition(s) THEN IF the wheels are free THEN
Statement(s) run the motors
ELSE ELSE
Statement(s) Think of it like this: stop the motors
ENDIF play an alarm on the speaker
ENDIF

In a program, the command would look like this:

IF stuck = 0 THEN
PULSOUT MotorRight, 3000
PULSOUT MotorLeft, 2500
ELSE
PULSOUT MotorRight, 2000
PULSOUT MotorLeft, 2000
FREQOUT Speaker, 500, 440
FREQOUT Speaker, 500, 880
FREQOUT Speaker, 500, 440
FREQOUT Speaker, 500, 880
ENDIF

It is very useful to use an IF ... THEN statement inside a DO...LOOP. This way, a program can test
a condition over and over again, and decide which action to take after each test. Let’s use this
sample [F...THEN statement inside a DO....LOOP:

V' Make sure your Scribbler is on its box with its wheels clear.
' Enter, save and run StallCircle.bs2, on the next page.
V' Turn off the Scribbler and disconnect the programming cable.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 25

' Scribbler PRASIC Frogramming uide - StallCircle.bs?Z =
' Driwve in circle, stop if stall sensor activates

' [SSTRAMP BS2}

' [SPEASIC 2.5}

DERUG "Program running!”

' I/0 PIN Definitions
Stall PIN 7
Speaker PIN 11
MotorRight PIN 12
MotorLeft PIN 13

' Motor Initalization
LoW MotorRight

LOW MotorLeft

FAUSE 100

' YVariable Declaration
stuck VAR Eit

oo
stuck = stall

IF stuck = 0 THEN
PULSOUT MotorRight, 3000
FULSOUT MotorLeft, 2500
ELSE
PULSOUT MotorRight, 2000
PULSOUT MotorLeft, 2000
FREQOUT Speaker, 500, 440
FREQOUT Speaker, 500, 880
FREQOUT Speaker, 500, 440
FREQOUT Speaker, 500, 3880 -
ENDIF

LOOP _
K ;IJ

V' Put the Scribbler on the floor in a clear area, and turn the power back on.
V' As the Scribbler drives in a circle, block it to trigger the stall sensor.
v When the alarm sounds, move the obstacle so the Scribbler can drive again.

You have seen IF...THEN working in a DO...LOOP. IF the wheels are free (stuck = 0), THEN the
motors get “go” commands. ELSE, when you block the Scribbler (stuck = 1) the motors get “stop”
commands, and an alarm plays for two seconds. When the loop repeats, the Scribbler tries to drive
again. If you have moved the obstacle, it will keep driving. If you have not moved the obstacle,
the stall sensor will kick in and the motors will stop again.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

26 - Writing Programs

Infrared Object Sensor System

Infrared is a color of light that the Scribbler can see, but P14: Right Object Sensor IR Emitter
your eyes cannot. The Scribbler Robot’s object sensor
system uses two infrared light emitter “headlights,” and
one infrared light detector between them.

P15: Left Object Sensor IR Emitter

The system works like this: Infrared light is emitted from
the right IR emitter (an IR LED), flashing very rapidly in
a special pattern. The IR detector in the middle looks for
this light pattern bouncing off of objects. If it sees the
infrared light signal reflected, it reports that there is an
object on that side. Then, the right IR LED turns off, and
the process is repeated with the left IR LED.

Infrared light reflects easily off of shiny, light-colored surfaces, but it is absorbed by dull, dark-
colored surfaces. So, the infrared object detection system will be able to see a white rubber
sneaker better than a black velvet slipper.

The Scribbler’s infrared detector has a filter that allows it to see only infrared light flashing very
rapidly, at 38,500 hertz (38.5 kilohertz). To make our infrared LEDs send out this modulated 38.5
kHz signal, we use the FREQOUT command.

ObsTxRight PIN 14

FREQOUT ObsTxRight, 1, 38500

We use a FREQOUT Duration of 1 because we only want the IR LED to emit a short burst of light
before the infrared sensor checks for a reflection.

The infrared detector is connected to No reflection detected
/O pin P6. If infrared light flashing 0V - —

at 38.5 kHz hits the detector, it sends High (Binary 1)
a low signal to P6 (binary 0). If no

Infrared
Detector

such modulated infrared light hits the Ilopgm _ _ _ _ _ _|X4voltiogic threshold — Signal
sensor, it sends a high signal to P6 Input g _ Low (Binary 0)
(binary 1). As with the stall sensor, N ;T T T - .y

we can use a variable to remember Reflection detected

the status of the infrared detector.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 27

This illustration shows the beam of light from
each IR LED as a cone. The infrared detector
field of vision overlaps both cones. By sending a
short burst of light from only one IR LED then
checking the detector, you can tell if an object is
on that side. This example code sequence will
test to see if an object is detected in front of the
Scribbler, to the right or to the left. It uses two
variables, one for each IR emitter.

' I/0 Pin Definitions

ObsRx PIN 6 ' infrared detector

ObsTxRight PIN 14 ' right IR emitter

ObsTxLeft PIN 15 ' left IR emitter

' Variables

eyeRight VAR Bit ' Variables to store sensor
eyeLeft VAR Bit ' status after using each IR LED
FREQOUT ObsTxRight, 1, 38500 ' Emit IR from right IR LED
eyeRight = ObsRx ' put sensor status in eyeRight
FREQOUT ObsTxLeft, 1, 38500 ' Repeat test with left IR LED
eyeleft = ObsRx ' put sensor status in eyeleft

Example Program: EyeTest.bs2

Let’s use this example code in a complete program. This program behaves a lot like the factory
program Demo Mode #2, Object Detection.

V' Make sure your Scribbler is on its box with its wheels clear.

\ Enter, save and run EyeTest.bs2, on the next page.

V' Hold a piece of white paper about 6 inches in front of the Scribbler, and move it back
and forth, while watching the green LEDs.

If the Scribbler sees the paper on the right, the right green LED lights up. If it sees the paper the
left, the left green LED lights up. If the paper is directly in front, both LEDs will light up.

Infrared Interference from Light Fixtures

If the green LEDs light up when there is nothing in front of the Scribbler, you may have a light
fixture that is emitting modulated infrared light at 38.5 kHz. This sometimes happens with
overhead fluorescent lighting. Run EyeTest.bs2 and point your Scribbler at the light fixture to
make sure. If the green LEDs light, up, you are detecting IR interference. Always turn off that
light fixture whenever you are using the infrared object detection system, or you may get
unexpected behavior from your Scribbler.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

28 - Writing Programs

EveTest bs2 I

| v

' Scribbler PBASIC Frogramming Guide - EyeTest.bsZ

' Test infrared object detectors, report via green LEDs
T [SSTRMP EBS2}

' [SPBRSIC 2.5}

DEBUG "Program Runningl!"

' I/0 Pin Definitions

OhsRx PIN & ' infrared detector
LedRight PIN 8 ' right green LED
LedLeft PIN 10 " left green LED
ObsTxRight PIN 14 ' right IR emitter
OhsTxleft PIN 15 ' left IR emitter

' Variable Declarations
eyeRight VAR Bit ' To remember sengsor status
eyeleft VAR Bit ' after each IR LED iz used

' Main Program

oo
FREQOUT CbsTxRight, 1, 38500 ' Emit IR from right IR LED
eyeRight = ObsRx ' put sensor status in eyeRight
FREQOUT CbsTxLeft, 1, 38500 ' Repeat test with left IR LED
eyeleft = ObsRx ' put sensor status in eyeleft
IF {eyeRight = 0) THEN ' if object iz detected at right
HIGH LedRight ' turn on right green LED
ELSE ' elze, no object is detected
LOW LedRight ' turn off right green LED
ENDIF
IF {(eyeleft = 0} THEN ' if object is detected at left
HIGH LedLeft ' turn on left green LED
ELSE ' else, no object is detected
Low LedLeft " turn off left green led P
ENDIF
LOOP ' repeat test
N :IJ

How EyeTest.bs2 Works
This program uses five I/O pin definitions, three for object detection and two for the green LEDs.

ObsRx PIN 6
LedRight PIN 8
LedLeft PIN 10
ObsTxRight PIN 14
ObsTxLeft PIN 15

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 29

Two variables are needed — one to store the IR detector status after using the right IR emitter, and
one to store the IR detector status after using the left IR emitter. That way we can remember what
the Scribbler sees (or doesn’t see) on both sides at the same time.

eyeRight VAR Bit
eyelLeft VAR Bit

After we have prepared the pin directives and initialization and declared the variables, we begin
the main program loop. This first FREQOUT command causes the right IR LED to emit infrared
light, modulated at 38.5 kHz, for 1 ms.

DO
FREQOUT ObsTxRight, 1, 38500

If this modulated infrared light bounces off an object and hits the IR sensor, the sensor will send a
low signal (binary 0) to the ObsRx pin. If not, the IR detector will send a high signal (binary 1).
This next command will check to see if the ObsRx pin is reporting a 0 or a 1, and will store that
value in the variable eyeRight.

eyeRight = ObsRx
The next two commands repeat the same process using the left IR LED and the variable eyeLeft.

FREQOUT ObsTxLeft, 1, 38500
eyeleft = ObsRx

Now the program uses the information stored in the variables to make a decision. If the IR detector
saw a reflection after using the right IR LED (eyeRight = 0), then turn on the right green LED with
the HIGH command. Otherwise, turn off the right LED with LOW.

IF (eyeRight = 0) THEN
HIGH LedRight

ELSE
LOW LedRight

ENDIF

Next, the same decision-making happens using the value stored in eyeLeft, and the process repeats.

IF (eyeLeft = 0) THEN
HIGH LedLeft
ELSE
LOW LedLeft
ENDIF
LOOP

Your Turn

V' Modify EyeTest.bs2 so that different tones play when the Scribbler detects your hand
on the right and on the left.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

30 - Writing Programs

Putting it All Together

Let’s try one final example program that runs all of the Scribbler Robots systems we have used so
far. But first, here’s one more programming trick that is useful when using more than one sensor in
the same program.

IF...THEN with Logical Operators

In the last example program, we made the green LEDs work in tandem with the infrared object
sensor. We used separate IF.. THEN commands for each IR emitter and green LED pair. In each
case, there was only one condition to test: If an object can be seen on this side, turn on the
corresponding green LED. But sometimes, you may want something to happen only if several
conditions are met at once.

Suppose you want the Scribbler to drive, but you want it to check for obstacles with both its
infrared sensor and its stall sensor. We would want the Scribbler to stop driving if:

1. an object can be seen to the right

OR

2. an object can be seen to the left

OR

3. the motors are running but the wheels can’t turn

OR is a logical operator that can be placed inside an IF...THEN command to make a complex
condition. Using OR twice in a single IF.. THEN command will cause the program to take the
same action if any one of those three conditions is true:

IF (eyeRight = 0) OR (eyeLeft = 0) OR (stuck = 1) THEN

There are three other logical operators that can be placed inside IF...THEN commands: AND,
NOT, and XOR. AND and OR work just the same way they do in ordinary speech. NOT can be
thought of as “anything but that!” XOR is kind of confusing at first. It means “one thing or the
other must be true, but not both, for the whole test to be true.” Now, let’s use OR in a program.

Example Program: SeeCircle.bs2

SeeCircle.bs2 is a bit like StallCircle.bs2, but it adds infrared obstacle detection. This program
will make the Scribbler drive in a circle with its green LEDs on. If the Scribbler sees an obstacle,
it stops driving, turns off the green LEDs and plays an alarm until you remove the obstacle. If the
Scribbler hits an object that it cannot see and gets stuck, the stall sensor activates and stops the
motors for one and a half seconds. Then the Scribbler tries to drive again.

Make sure your Scribbler is on its box with its wheels clear.

Enter, save and run SeeCircle.bs2, on the next page.

Turn off the Scribbler and disconnect the programming cable.

Put the Scribbler on the floor in a clear area, and turn the power back on.

2L =2 2 =2

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 31

SeeCircle.bs2
" Scribbler PBASIC Programming Guide — SeeCircle.bsZ =
" Drive Scribbler in circle with LED= on. If it seez an object: stop,

" turn off LED=, and sound alarm until the obstacle is removed. If it
" ztalls, stop and sound alarm for 1.5 zec. then try driving again.

T [SETAME BEZ2}

T {SPBASIC Z.5}

DEBUG "Program running!”

" I/0 Pin Definitions

ObsRx FIN @ " infrared detector
8tall PIN 7 " ztall sensor
LedRight PIN 8 " right gresn LED
LedCenter PIN 9 " center green LED
LedLeft PIN 10 " left green LED
Speaker PIN 11 T =zpeaker
MotorRight PIN 12 " right wheel motor
MotorLeft PIN 13 " left wheel motor
ObsTxRight PIN 14 " right IR emitter
ObsTxLeft PIN 15 " left IR emitter

" Motor Initializaticon
LOW MotorRight

LOW MotorLeft

PAURE 100

" Wariable Declaraticons

eyeRight VAR Bit " To remember IR sensor status
eyeLeft VAR Bit " after each IR LED iz used
stuck VAR Bit " To remember stall sensor status
Do
FREQOUT oObsTxRight, 1, 38500 " Emit IR from right IE LED
eyeRight = ObsRx " put sensor status in eyeRight
FREEQOUT Ob=sTxleft, 1, 38500 ' Repeat test with left IR LED
aeyeleft = CObsREx " put sensor status in eyeleft
stuck = Btall " put stall sensor status in stuck

IF (eyeRight = 0) OR (eyeLeft = 0) OR (stuck = 1) THEN ' an obhject

PULSOUT MotorRight, 2000 " iz in the way. Stop both of
PULSCOUT MotorLeft, 2000 T the wheel motors...
LOW LedRight " ...turn off the LED=...

LOW LedCenter
LOW LedLeft

FREQOUT Speaker, 750, 1200, 1500 T ...and sound an alarm.
FREQOUT &peaker, 750, 800, 1Z00

ELSE " Else, no ohjects are in the way
PULSOUT MotorRight, 2500 " zo right wheel forward, and left
PULSOUT MotorLeft, 3000 " wheel fwd faster, drive 1in circle
HIZH LedRight " and turn on the LED=z back on

HIGH LedCenter
HIGH LedLeft o

ENDIF
LOOF -
|| I k

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

32 - Writing Programs

V As the Scribbler drives in a circle, hold a piece of paper in front of it to trigger the
obstacle detector system.

' Let it drive again, and then try to block it from the side to trigger the stall sensor.

V' When the alarm sounds, move the obstacle so the Scribbler can drive again.

How SeeCircle.bs2 Works

The program uses I/O pin definitions for all of the Scribbler parts this program controls: the
motors, the green LEDs, the IR LEDs, the speaker, the stall sensor, and the infrared detector.

ObsRx PIN 6
Stall PIN 7
LedRight PIN 8
LedCenter PIN 9
LedLeft PIN 10
Speaker PIN 11
MotorRight PIN 12
MotorLeft PIN 13
ObsTxRight PIN 14
ObsTxLeft PIN 15

Next comes motor initialization, setting their I/O pins to output low and allowing wake-up time.

LOW MotorRight
LOW MotorLeft
PAUSE 100

Three bit-sized variables are declared to hold sensor values: one for the IR sensor after using the
right IR emitter, one for the IR sensor after using the left IR emitter, and one for the stall sensor.

eyeRight VAR Bit
eyeLeft VAR Bit
stuck VAR Bit

The loop begins with a short light burst from the right IR emitter. The I/O pin ObsRx is monitoring
the IR detector signal (0 = reflection, 1 = no reflection) and the status of ObsRx gets stored in the
variable eyeRight. The process repeats with the left IR emitter and eyeLeft.

DO
FREQOUT ObsTxRight, 1, 38500
eyeRight = ObsRx

FREQOUT ObsTxLeft, 1, 38500
eyeleft = ObsRx

The Stall I/O pin is monitoring the stall sensor signal (0 = not stuck, 1= stuck). The next
instruction stores the status of Stall in the stuck variable.

stuck = Stall

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 33

Now, it is time use the three variables to test if there is something in the Scribbler’s way. IF the
infrared sensor saw a reflection from the right (eyeRight = 0) OR a reflection from the left (eyeLeft
= 0), OR if the stall sensor says the wheels are not turning (stuck = 1) THEN we want the motors
to stop....

IF (eyeRight = 0) OR (eyeLeft = 0) OR (stuck = 1) THEN
PULSOUT MotorRight, 2000
PULSOUT MotorLeft, 2000

....and we want the green LEDs to turn off....

LOW LedRight
LOW LedCenter
LOW LedLeft

...and we want an alarm to sound for one and a half seconds.

FREQOUT Speaker, 750, 1200, 1500
FREQOUT Speaker, 750, 800, 1200

But if the three variables all show that there is nothing in the Scribbler’s way, it is safe to
command the motors to drive forward....

ELSE
PULSOUT MotorRight, 2500
PULSOUT MotorLeft, 3000

...and for the green LEDs to turn on. The decision-making ends, and the test to repeats:

HIGH LedRight
HIGH LedCenter
HIGH LedLeft
ENDIF
LOOP

You might have noticed something funny. If the Scribbler stops when it sees an object, it does not
try to drive until the object is removed. But if it gets stuck, it tries to drive again after 1.5 seconds.
This happens because the IR detector system keeps working when the motors stop, but the stall
sensor only senses that the Scribbler is stuck when the motors are running but the wheels can’t
turn. So, after it senses a stall and the motors turn off, it cannot keep sensing that it is stuck until
the wheels try to turn again.

Your Turn

V' Modify SeeCircle.bs2 so the IF...THEN command uses two AND operators instead of
OR, but works the same way. HINT: take a close look at the variable conditions too.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

34 - Writing Programs

Congratulations!

You have learned a lot! You have gained a lot of PBASIC
programming skills. Now, you know how to:

NOW YOU KNOW

AND
BIN
Write a PBASIC program and load it into the BASIC Bit
Stamp inside your Scribbler CR
. DEBUG
Create and format Debug Terminal messages DEC
Display your name using ASCII code DO. . .LOOP
Make actions repeat in an infinite loop END
Create and use 1/0 pin definitions FREQOUT
Declare variables iél\ig
Use bit Va.riables to St.ore information from a sensor IF. . . THEN. . .FLSE
Test a variable condition to make a program decision LOW
Make a test that requires more than one condition to be OR
PIN
PULSOUT
VAR

You have applied these skills in many ways to control your Scribbler

robot.

You know how the BASIC Stamp /O pins are connected to your Scribbler.

You know what three states these 1/O pins can be in, and what they are for.

You can switch the Scribbler’s green LEDs on and off.

You can make the speaker generate tones at different frequencies and durations to make
alarm sounds or play a song.

You can send control signals to the motors to make the Scribbler drive forward,
backward, or turn.

You can use a program test and calibrate the motors to make the Scribbler drive
straight.

You know that the BASIC Stamp 1/O pins interpret high and low input signals by using
the 1.4 volt TTL logic threshold.

You can use an I/O pin as an input to monitor the status of a sensor, such as the stall
Sensor.

You can coordinate the use of three I/O pins together with the infrared object detection
system.

You can use the Debug Terminal, the green LEDs and the speaker to let you know what
a sensor is detecting.

You can use the stall sensor and the infrared obstacle sensor system with the motors to
make the Scribbler respond to its environment as it drives.

Did you have any idea that you had learned so much? Great Job! Now, you are ready to
experiment with writing your own custom PBASIC programs for your Scribbler Robot!

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

Writing Programs - 35

More about the Scribbler PBASIC Programming Guide

The Scribbler PBASC Programming Guide is
a series of educational modules that introduce
robotics and programming concepts in an
illustrated, step-by-step format.

This module, Writing Programs, was designed
to help the beginner learn to use BASIC Stamp
Editor through building simple programs. It
did not introduce all of the capabilities of the
BASIC Stamp microcontroller or the Editor
software, nor did it use all of the features of
the Scribbler Robot. Watch our website,
www.ScribblerRobot.com, for more modules
in this series.

Scribbler Forums

Would you like to share your experiences programming your Scribbler in PBASIC with others?
Visit our moderated forums at http://forums.ScribblerRobot.com where you can post questions,
help others, and share ideas with other Scribbler owners.

= 9"»3@ |

=Y 5
&7

Have a Great Idea?

Graphical Programming

Would you like to learn to program your
Scribbler Robot using graphics instead of
text? The Scribbler Program Maker GUI
(Graphical User Interface) software lets you
build programs graphically with action tiles
and mouse clicks. This is the perfect
starting place for beginning programmers
age 8 and up.

You can download the latest versions of the
Scribbler Program Maker software and the
Scribbler GUI Programming Guide free
from the Downloads page of our website
www.ScribblerRobot.com.

Did you design a really great Scribbler PBASIC project that you would like to share? We are
inviting educators and robotics enthusiasts to write modules for the Scribbler PBASC
Programming Guide. If you are interested, email aalvarez@parallax.com.

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

36 - Writing Programs

ASCII Chart (Characters 32 through 127)

ASCII Codes 32 through 126 correspond to the characters that can be displayed with the BASIC
Stamp Editor’s Debug Terminal (127 is “delete”).

Dec | Hex | Char Dec | Hex | Char Dec | Hex | Char Dec | Hex | Char
32 | 20 | space 56 | 38 8 80 | 50 P 104 | 68 h
33 | 21 ! 57 | 39 9 81 | 51 Q 105 | 69 i
34 | 22 " 58 | 3A : 82 | 52 R 106 | 6A j
35 | 23 # 59 | 3B X 83 | 53 S 107 | 6B k
36 | 24 $ 60 | 3C < 84 | 54 T 108 | 6C I
37 | 25 % 61 | 3D = 85 | 55 U 109 | 6D m
38 | 26 & 62 | 3E > 86 | 56 V 110 | 6E n
39 27 ' 63 3F ? 87 57 W 111 | 6F o
40 | 28 (64 | 40 @ 88 | 58 X 112 | 70 p
41 | 29) 65 | 41 | A 89 [59 [Y 113 | 71 q
42 | 2A * 66 | 42 B 90 | 5A Z 114 | 72 r
43 | 2B + 67 | 43 C 91 | 5B [115 | 73 S
44 | 2C , 68 44 D 92 5C \ 116 | 74 t
45 | 2D - 69 | 45 E 93 | 5D] 117 | 75 u
46 2E . 70 46 F 94 5E N 118 | 76 \Y}
47 | 2F / 71 | 47 G 95 | 5F . 119 | 77 w
48 | 30 0 72 | 48 H 96 | 60 i 120 | 78 X
49 | 31 1 73 | 49 I 97 | 61 a 121 | 79 y
50 | 32 2 74 | 4AA J 98 | 62 b 122 | 7A y4
51 | 33 3 75 | 4B K 99 | 63 C 123 | 7B {
52 | 34 4 76 | 4C L 100 | 64 d 124 | 7C |
53 | 35 5 77 | 4D M 101 | 65 e 125 | 7D }
54 | 36 6 78 | 4E N 102 | 66 f 126 | 7E ~
55 | 37 7 79 | 4F @) 103 | 67 g 127 | 7F | delete

Dec = Decimal (base 10) Hex = Hexadecimal (base 16) Char = Character

Scribbler PBASIC Programming Guide
© Parallax Inc. 9/2005 v1.2 - Download Free from www.ScribblerRobot.com/Education

